Clinical Photography

Medical illustrations

Caitlin Monney, and Emily McDougall. 1.2: Fig 2-4, 1.3: Fig 1-6, 1.6: Fig 2, 4, 5, 7, 11, 12, 14, 15-7. Table 11, 1.7: Fig 1-2, 4-6, 1.8: Fig 13, 1.9: Fig 1-4, 1.10: Fig 1-2, 1.12: Fig 2, 1.14: Fig 4, 1.16: Fig 3-10, 14-26. Table 7, 1.17: Table 5, Fig 1-2, 1.18: Fig 5, 7, 1.21: Fig 1-4, 6-7, 1.22: Fig 2-6, 8, 1.23: Fig 1, 8, 1.24: Fig 2, 5, 1.25: Fig 1-3, 1.26: Fig 3, 5-9, 11, 3.2: Fig 5, 7-24, 26, 33, 40, 66, 73-4, 78, 86, 109, 110, 123, 126, 136-7, 153, 155, 157. 3.4: Fig 2, 34, 40, 74.

Peter Gardiner. 1.3: Fig 7-11, 1.4: Fig 1-4. 1.5: Fig 1-5, 1.11: Fig 2, 4-6, 1.15: Fig 2-5, 22-25, 29, 31, 46, 1.18: Fig 1-3, 1.19: Table I, 1.22: Fig 1. 3.2: Fig 6, 154

Clinical photographs

Alex Rothman. 1.5: Fig 6, 1.6: Fig 10, 1.8: Fig 14, 1.9: Fig 5, 1.15: Fig 8, 1.16: Fig 26.

Centers for Disease Control and Prevention Image Library. 1.8: Fig 1 – 2631, Fig 15 – 15408/15403, 1.15: Fig 20 – 2632, 32 – 15115.

D@nderm. 1.11: Fig 1, 3, 1.15: Fig 8, 1.19: Fig 12, 1.21: Fig 5, 1.23: Fig 2-7, 9-14, 1.26: Fig 15.

Auckland district health board – adhb.govt.nz. 1.15: Fig 6-15, 17-19, 21.

NHS Fife. 3.2: Fig 72.

John Offenbach. David Osrin review photo.

X Rays

Mark Rodrigues. 1.7: Fig 3, 1.18: Fig 9, 1.19: Fig 2-11, 13. 1.22: Fig 7, 10.

Radiopedia. 1.15: Fig 37, 1.16: Fig 11-13, 3.4: Fig 56.

A catalogue record for this book is available from the British Library.
Introduction

It has been a privilege to work with so many Paediatricians, and to serve as part of the big teams that deliver the excellent care that every child deserves. Whilst my career to date has involved challenging situations, I have invariably been able to unite with colleagues and parents around the fact that above anything else, the wellbeing of a child should not be compromised.

Editing this book, and working closely with my professional colleagues has really made me reflect on what the true definition of a Paediatrician might be. I'm on a Paediatric training programme, but I don't think this is necessary to be a Paediatrician. I am privileged to say that I have passed the MRCPCH membership examinations, but again don't think that is necessary to be a Paediatrician. I am now delighted to say that I've edited a Paediatrics textbook. But this doesn't qualify me as a Paediatrician.

So what is the core essence of this profession? Who can be a Paediatrician, in the true spirit of the word? And who should decide? In my humble opinion, it comes down to one simple litmus test. Can you do what is necessary, within the limitations of your knowledge, to be an advocate for a potentially sick child? Are you willing to try your utmost to communicate with a child and family to identify what their possible concerns are, and tease out any relevant pathology? If something goes wrong, or you are unhappy with something that is done regarding a child's care, regardless of any contextual factors, will you speak up on behalf of the child?

‘...the most important thing in Paediatrics comes down to caring for the child, and when it comes down to this there should be no hierarchy' child throughout their life course is indispensable in identifying when things might go wrong in advance. The academics that improve the evidence on which care can be delivered: they are Paediatricians. The managers and policy makers that turn ideas into a reality: they are Paediatricians. And the Emergency Medicine doctor that sees a frightened parent and sick child for the first time, the ENT surgeon, the orthopaedic surgeon, the paediatric surgeon, the geneticist, the immunologist, the physiotherapist, the art therapist, the play specialist, the nurse, the dietitian, the pharmacist, the social worker, the teacher, the police, every specialist, every person, every advocate that helps identify and address concerns and potential concerns to a child's wellbeing: They are all Paediatricians.

I am indebted to all their guidance and help in helping me provide care to children that I cannot fully provide on my own. It's up to you to decide what a Paediatrician is. But in my humble opinion, you can all be a Paediatrician today.
Additionally, we want you to get involved. This textbook has mainly been written by junior doctors and students just like you because we believe:

...that fresh graduates have a unique perspective on what works for students. We have tried to capture the insight of students and recent graduates to make the language we use to discuss this complex material more digestible for students.

...that texts are in constant need of being updated. Every student has the potential to contribute to the education of others by innovative ways of thinking and learning. This book is an open collaboration with you.

You have the power to contribute something valuable to medicine; we welcome your suggestions and would love for you to get in touch.

Please get in touch and be part of the medical education project

admin@unofficialguidetomedicine.com
@DrZeshanQureshi
Facebook Unofficial Guide to Medicine
www.unofficialguidetomedicine.com
Foreword

Dr Simon Broughton PhD FRCPCH
• Consultant Paediatrician, King’s College Hospital NHS Foundation Trust
• Senior Lecturer, King’s College London – Course Director, MSc in Advanced Paediatrics
• Training Programme Director

Beryl Lin
• President, University of New South Wales Medical Society
• Co-chair, University of New South Wales Paediatrics Special Interest Group

Congratulations to Zeshan and his colleagues on producing ‘The Unofficial Guide to Paediatrics’. It is a huge piece of work by trainees and experts for anybody who has an interest in paediatrics, from medical students to established consultants and anybody interested in caring for children.

This book covers paediatrics in a traditional system based approach, but also has sections on the expanding speciality of adolescent healthcare, child health and the law, and public health. In addition, with sections on undergraduate and postgraduate assessments, starting out as a junior doctor and career sections, it provides useful advice to medical students and junior doctors wherever they are in their own career.

So, why do we need another textbook on paediatrics? There are already plenty of excellent texts on this subject, however none have created a book like this. The inspiration behind this book is the working together of junior doctors, medical students, and experts to pull together a textbook that is accessible to all types of learners. We now live in a world where knowledge is so widely and freely available, that simply reprinting knowledge is becoming unnecessary. If knowledge is to be pulled together in a textbook, then every effort should be made to make that knowledge as relevant and accessible to the reader as possible, and that is what the Unofficial Guide to Paediatrics achieves.

Every effort has been made to make this textbook as up to date as possible. However, inevitably, new research and guidance will be published. The genius behind this book however, is in empowering readers or users of this book to write to Zeshan with updates and suggestions for future editions.

Being a Paediatrician is an absolute privilege, caring for children and young people and their families at very difficult times in their lives is an unbelievably rewarding challenge. One of the challenges that busy paediatricians struggle with, is keeping themselves up to date in all areas of paediatrics. The Unofficial Guide to Paediatrics will help with that, providing guidance to paediatricians of the future and assist in providing excellent care to children, young people and their families.

Paediatrics is a ‘big’ topic about ‘little’ people. It is intellectually challenging and an exciting field for research and learning, but it can also be daunting when medical school is often set up to focus on adult medicine. Caring for children is different – both in a purely scientific sense, but also the way a sick child and their family should be approached, the dynamic of the hospital and multidisciplinary team, the ethical and sociocultural considerations involved, and even the career pathways that present are unique – all of which are covered in this book.

The Unofficial Guide to Paediatrics features an easy-to-read overview of paediatrics, broken down by systems. Each chapter describes core conditions by beginning with aetiology and clinical features, and progresses through investigations, differential diagnoses, management, complications, and finally prognosis. Furthermore, this book covers history taking, examination, communication, and practical skills – all supplemented with clinical cases, labelled diagrams, and information about common examinations and assessment criteria. The authors have also provided illustrations of common procedures and medical devices in clinical practice.

As a book produced and written by trainees for other trainees, it captures key information in a digestible manner. With extensive collaboration from renowned academics and specialists, the content is reliable and based on up-to-date evidence.

This textbook is part of an international medical education project, which embodies a passion for peer teaching, and the empowerment of young people who are making a positive impact. Congratulations to Zeshan’s team for this award-winning series of textbooks that will help others in their medical journey.

In the wonderful world of paediatrics, this is a wonderful resource for students, junior doctors, and paediatric trainees alike - or anyone looking for a simple and reliable complement to learning from the literature and clinical encounter. The development and success of this has been no child’s play - one might even say, it’s a milestone of an achievement!
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C compound</td>
<td>4-carbon compound</td>
</tr>
<tr>
<td>5C compound</td>
<td>5-carbon compound</td>
</tr>
<tr>
<td>17OHP</td>
<td>17-Hydroxyprogesterone</td>
</tr>
<tr>
<td>A</td>
<td>Artery</td>
</tr>
<tr>
<td>ABG</td>
<td>Arterial blood gas</td>
</tr>
<tr>
<td>ABPA</td>
<td>Allergic bronchopulmonary aspergillosis</td>
</tr>
<tr>
<td>ABP</td>
<td>Arterial blood pressure</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>ADH</td>
<td>Antidiuretic hormone</td>
</tr>
<tr>
<td>ADID</td>
<td>Attention Deficit Hyperactivity Disorder</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>ADPRT</td>
<td>Adenosine diphosphate ribosyltransferase</td>
</tr>
<tr>
<td>ADHGD</td>
<td>Adenosine deaminase, ribosyltransferase</td>
</tr>
<tr>
<td>ADE</td>
<td>Adenocarcinoma</td>
</tr>
<tr>
<td>ADNF</td>
<td>Antidepressant risk factors</td>
</tr>
<tr>
<td>AG</td>
<td>Aldolase</td>
</tr>
<tr>
<td>AHA</td>
<td>Arterial oxygenation analysis</td>
</tr>
<tr>
<td>AIC</td>
<td>Anterior intercostal artery</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute lymphoblastic leukemia</td>
</tr>
<tr>
<td>AMH</td>
<td>Antimüllerian hormone</td>
</tr>
<tr>
<td>AMO</td>
<td>Antimicrobial activity</td>
</tr>
<tr>
<td>AP</td>
<td>Arterial pressure</td>
</tr>
<tr>
<td>APP</td>
<td>Alpha-1-antitrypsin</td>
</tr>
<tr>
<td>APPL</td>
<td>Anterior pituitary lobe</td>
</tr>
<tr>
<td>APTR</td>
<td>Activated partial thromboplastin time</td>
</tr>
<tr>
<td>ART</td>
<td>Antiretroviral therapy</td>
</tr>
<tr>
<td>AS</td>
<td>Arterial stenosis</td>
</tr>
<tr>
<td>ASD</td>
<td>Atrial septal defect</td>
</tr>
<tr>
<td>ASCT</td>
<td>Antisynthetase syndrome</td>
</tr>
<tr>
<td>ATG</td>
<td>Anti-thymocyte globulin</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AVP</td>
<td>Adrenergic vasoconstrictor</td>
</tr>
<tr>
<td>AVP</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>AVP</td>
<td>Adrenergic vasoconstrictor</td>
</tr>
<tr>
<td>AVPU</td>
<td>Alert, voice, pain, unresponsive</td>
</tr>
<tr>
<td>AVSD</td>
<td>Atrioventricular septal defect</td>
</tr>
<tr>
<td>B</td>
<td>Baseline</td>
</tr>
<tr>
<td>BC</td>
<td>Baseline creatinine</td>
</tr>
<tr>
<td>BF</td>
<td>Baseline flow</td>
</tr>
<tr>
<td>BFI</td>
<td>Baseline fentanyl infusion</td>
</tr>
<tr>
<td>B/G</td>
<td>Baseline glucose</td>
</tr>
<tr>
<td>BHR</td>
<td>Baseline heart rate</td>
</tr>
<tr>
<td>BM</td>
<td>Baseline mental state</td>
</tr>
<tr>
<td>BNP</td>
<td>Brain natriuretic peptide</td>
</tr>
<tr>
<td>BOR</td>
<td>Baseline oxygenation</td>
</tr>
<tr>
<td>BPS</td>
<td>Baseline pulmonary artery pressure</td>
</tr>
<tr>
<td>BRS</td>
<td>Baseline respiratory system</td>
</tr>
<tr>
<td>C</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>C1q</td>
<td>Complement component 1q</td>
</tr>
<tr>
<td>C2</td>
<td>Complement component 2</td>
</tr>
<tr>
<td>C3</td>
<td>Complement component 3</td>
</tr>
<tr>
<td>C4</td>
<td>Complement component 4</td>
</tr>
<tr>
<td>C5</td>
<td>Complement component 5</td>
</tr>
<tr>
<td>C6</td>
<td>Complement component 6</td>
</tr>
<tr>
<td>C7</td>
<td>Complement component 7</td>
</tr>
<tr>
<td>C8</td>
<td>Complement component 8</td>
</tr>
<tr>
<td>C9</td>
<td>Complement component 9</td>
</tr>
<tr>
<td>CA</td>
<td>Carboxylic acid</td>
</tr>
<tr>
<td>CAL</td>
<td>Calcium</td>
</tr>
<tr>
<td>CAM</td>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>CAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CAN</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CANJ</td>
<td>Central auditory processing</td>
</tr>
<tr>
<td>CAP</td>
<td>Carboxypeptidase A</td>
</tr>
<tr>
<td>CAPS</td>
<td>Cellulose acetate polysulfone</td>
</tr>
<tr>
<td>CART</td>
<td>CART peptide</td>
</tr>
<tr>
<td>CB</td>
<td>Collagen binding activity</td>
</tr>
<tr>
<td>CBS</td>
<td>Cystathionine beta synthase</td>
</tr>
<tr>
<td>CBT</td>
<td>Cognitive behaviour therapy</td>
</tr>
<tr>
<td>CCM</td>
<td>Cerebral cortical malfunction</td>
</tr>
<tr>
<td>CD</td>
<td>Cerebral disconnection of the hippocampus</td>
</tr>
<tr>
<td>CDP</td>
<td>Constitutional delay of growth and puberty</td>
</tr>
<tr>
<td>CER</td>
<td>Clinical evaluation exercise</td>
</tr>
<tr>
<td>CFC</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>CFAH</td>
<td>Cerebral function analysis</td>
</tr>
<tr>
<td>CPF</td>
<td>Continuous positive airway pressure</td>
</tr>
<tr>
<td>CRH</td>
<td>Corticotropin releasing hormone</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>CTG</td>
<td>Cardiograpy</td>
</tr>
<tr>
<td>CV</td>
<td>Central venous pressure</td>
</tr>
<tr>
<td>CVF</td>
<td>Central venous fluid</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P450 enzyme</td>
</tr>
<tr>
<td>CYC</td>
<td>Cyclosporine</td>
</tr>
<tr>
<td>D</td>
<td>Dermal epidermal junction</td>
</tr>
<tr>
<td>DAE</td>
<td>Dual energy X-ray absorptiometry</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DAH</td>
<td>Diacylglycerol acyltransferase</td>
</tr>
<tr>
<td>DABA</td>
<td>Dihydroxyacetonephosphate</td>
</tr>
<tr>
<td>DAS</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>DAV</td>
<td>Disseminated intravascular coagulation</td>
</tr>
<tr>
<td>DEDMO</td>
<td>Diabetes insipidus, diabetes mellitus, optic atrophy and deafness</td>
</tr>
<tr>
<td>DEO</td>
<td>Distal intestinal obstruction syndrome</td>
</tr>
<tr>
<td>DHEAS</td>
<td>Dehydroepiandrosterone sulphate</td>
</tr>
<tr>
<td>DHT</td>
<td>Dihydrotestosterone</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetic ketoacidosis</td>
</tr>
<tr>
<td>DMB</td>
<td>Diabetic macular edema</td>
</tr>
<tr>
<td>DMD</td>
<td>Diagnosis of mental retardation</td>
</tr>
<tr>
<td>DMARD</td>
<td>Disease-modifying antirheumatic drug</td>
</tr>
<tr>
<td>DNMT</td>
<td>Differentiation and gene targeting</td>
</tr>
<tr>
<td>DOA</td>
<td>Dihydroxyacetonephosphate</td>
</tr>
<tr>
<td>DOCA</td>
<td>Dihydromonoamine oxidase</td>
</tr>
<tr>
<td>DOPA</td>
<td>Dopamine</td>
</tr>
<tr>
<td>DOPS</td>
<td>Direct observation of procedural skills</td>
</tr>
<tr>
<td>DREX</td>
<td>Drug Reaction (or Rash) with eosinophilia and systemic symptoms</td>
</tr>
<tr>
<td>DSS</td>
<td>Double stranded DNA</td>
</tr>
<tr>
<td>EER</td>
<td>Endotracheal rupture</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>ECMO</td>
<td>Extracorporeal membrane oxygenation</td>
</tr>
<tr>
<td>ED</td>
<td>Emergency department</td>
</tr>
<tr>
<td>EHD</td>
<td>Extradural haemorrhage</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>EHEC</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EIC</td>
<td>Erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>EIS</td>
<td>Endocardial ischaemia</td>
</tr>
<tr>
<td>ELS</td>
<td>Extraluminal spread</td>
</tr>
<tr>
<td>ETC</td>
<td>Electron transmission chain</td>
</tr>
<tr>
<td>ETEC</td>
<td>Enterotoxigenic Escherichia coli</td>
</tr>
<tr>
<td>EVT</td>
<td>Extraventricular drain</td>
</tr>
<tr>
<td>FBC</td>
<td>Full blood count</td>
</tr>
<tr>
<td>FFP</td>
<td>Frozen plasma</td>
</tr>
<tr>
<td>FGFR</td>
<td>Fibroblast growth factor receptor</td>
</tr>
<tr>
<td>FIO</td>
<td>Fraction of inspired oxygen</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescence in situ hybridization</td>
</tr>
<tr>
<td>FMRI</td>
<td>Functional magnetic resonance imaging</td>
</tr>
<tr>
<td>FODMAP</td>
<td>Fermentable oligo- di- mono- saccharides and polyols</td>
</tr>
<tr>
<td>FG</td>
<td>Fasting plasma glucose</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>FUC</td>
<td>Forced vital capacity</td>
</tr>
<tr>
<td>G6PD</td>
<td>Glucose-6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GA1</td>
<td>Glutamic aciduria type 1</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GAD</td>
<td>Glutamic acid decarboxylase</td>
</tr>
<tr>
<td>GAL</td>
<td>Galactosamine-glycosyltransferase</td>
</tr>
<tr>
<td>GALT</td>
<td>Galactosyltransferase</td>
</tr>
<tr>
<td>GALS</td>
<td>Galactose-1-phosphate uridylyltransferase</td>
</tr>
<tr>
<td>GARS-2</td>
<td>Gilliam Autism Rating Scale</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>SCAD</td>
<td>Short-chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>SCBU</td>
<td>Special care baby unit</td>
</tr>
<tr>
<td>SCID</td>
<td>Severe combined immunodeficiency</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goals</td>
</tr>
<tr>
<td>SDH</td>
<td>Subdural haemorrhage</td>
</tr>
<tr>
<td>SEDU</td>
<td>Specialist eating disorders unit</td>
</tr>
<tr>
<td>SENCO</td>
<td>Special Educational Needs Coordinator</td>
</tr>
<tr>
<td>SGA</td>
<td>Small for gestational age</td>
</tr>
<tr>
<td>SHOX</td>
<td>Short Stature Homebox gene</td>
</tr>
<tr>
<td>SIAU</td>
<td>Syndrome of inappropriate antidiuretic hormone secretion</td>
</tr>
<tr>
<td>SIDS</td>
<td>Sudden infant death syndrome</td>
</tr>
<tr>
<td>SIGN</td>
<td>Scottish Intercollegiate Guidelines Network</td>
</tr>
<tr>
<td>SIMV</td>
<td>Synchronised intermittent mandatory ventilation</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>SMA</td>
<td>Spinal muscular atrophy</td>
</tr>
<tr>
<td>SNHL</td>
<td>Sensorineural hearing loss</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single-photon emission computed tomography</td>
</tr>
<tr>
<td>SpO2</td>
<td>Oxygen saturation</td>
</tr>
<tr>
<td>SROM</td>
<td>Spontaneous rupture of membranes</td>
</tr>
<tr>
<td>SRS</td>
<td>Social Responsiveness Scale</td>
</tr>
<tr>
<td>SSPE</td>
<td>Subacute sclerosing panencephalitis</td>
</tr>
<tr>
<td>SSR</td>
<td>Selective serotonin reuptake inhibitor</td>
</tr>
<tr>
<td>STEC</td>
<td>Shiga Toxin-Producing E. coli</td>
</tr>
<tr>
<td>SUDEP</td>
<td>Sudden unexpected death in epilepsy</td>
</tr>
<tr>
<td>SUDI</td>
<td>Sudden unexpected death in infancy</td>
</tr>
<tr>
<td>SUFE</td>
<td>Slipped upper femoral epiphysis</td>
</tr>
<tr>
<td>SVCO</td>
<td>Superior vena cava obstruction</td>
</tr>
<tr>
<td>SVD</td>
<td>Spontaneous vaginal delivery</td>
</tr>
<tr>
<td>SWT</td>
<td>Supraventricular tachycardia</td>
</tr>
<tr>
<td>SWAN</td>
<td>Syndrome without a name</td>
</tr>
<tr>
<td>SWS</td>
<td>Sturge-Weber syndrome</td>
</tr>
<tr>
<td>T1DM</td>
<td>Type-1 diabetes mellitus</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type-2 diabetes mellitus</td>
</tr>
<tr>
<td>TAC</td>
<td>Team around the child</td>
</tr>
<tr>
<td>TAPVD</td>
<td>Total anomalous pulmonary venous drainage</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricarboxylic acid</td>
</tr>
<tr>
<td>TDS</td>
<td>Ter die sumendum i.e. Three times a day</td>
</tr>
<tr>
<td>TET</td>
<td>Thyroid function test</td>
</tr>
<tr>
<td>Tg</td>
<td>Thylaglobulin</td>
</tr>
<tr>
<td>tTGA</td>
<td>Tissue transglutaminase antibody</td>
</tr>
<tr>
<td>Th2</td>
<td>Type 2 Helper T-Cell</td>
</tr>
<tr>
<td>Thal</td>
<td>Thalassemia</td>
</tr>
<tr>
<td>TIA</td>
<td>Transient ischaemic attack</td>
</tr>
<tr>
<td>TIBC</td>
<td>Total isoenzyme binding capacity</td>
</tr>
<tr>
<td>TLS</td>
<td>Tumour lysis syndrome</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TORCH</td>
<td>Toxoplasmosis, Other, Rubella, CMV, Herpes</td>
</tr>
<tr>
<td>TPO</td>
<td>Thyroperoxidase</td>
</tr>
<tr>
<td>TPMT</td>
<td>Thiopurine methyltransferase</td>
</tr>
<tr>
<td>TPN</td>
<td>Total parenteral nutrition</td>
</tr>
<tr>
<td>TRH</td>
<td>Thyrotropin-releasing hormone</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroid-stimulating hormone</td>
</tr>
<tr>
<td>TST</td>
<td>Thyroid-stimulating test</td>
</tr>
<tr>
<td>tTG</td>
<td>Tissue transglutaminase</td>
</tr>
<tr>
<td>TTN</td>
<td>Transient tachypnoea of the newborn</td>
</tr>
<tr>
<td>UAC</td>
<td>Umbilical artery catheter</td>
</tr>
<tr>
<td>UC</td>
<td>Ulcerative colitis</td>
</tr>
<tr>
<td>UDT</td>
<td>Undescended testes</td>
</tr>
<tr>
<td>U&E</td>
<td>Urea and electrolytes</td>
</tr>
<tr>
<td>UO</td>
<td>Urteric orifice</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>URTI</td>
<td>Upper respiratory tract infection</td>
</tr>
<tr>
<td>US5</td>
<td>Ultrasound scan</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UVC</td>
<td>Umbilical vein catheter</td>
</tr>
<tr>
<td>VACTERL</td>
<td>Vertebral defects, anal association</td>
</tr>
<tr>
<td>TSA</td>
<td>Tracheo-oesophageal fistula, renal anomalies and limb abnormalities</td>
</tr>
<tr>
<td>VHL</td>
<td>Von Hippel-Lindau disease</td>
</tr>
<tr>
<td>VCLAD</td>
<td>Very-long-chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>VMAC</td>
<td>Vanillylmandelic acid</td>
</tr>
<tr>
<td>VMAT</td>
<td>Vescular monoamine transporter</td>
</tr>
<tr>
<td>VP</td>
<td>Venticulopontineal</td>
</tr>
<tr>
<td>VSD</td>
<td>Venticulal septal defect</td>
</tr>
<tr>
<td>VT</td>
<td>Venticular tachycardia</td>
</tr>
<tr>
<td>VTEC</td>
<td>Venotoin producing</td>
</tr>
<tr>
<td>ESR</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>VEU</td>
<td>Vescicoureteric junction</td>
</tr>
<tr>
<td>VUR</td>
<td>Vesico-ureteric reflux</td>
</tr>
<tr>
<td>VZV</td>
<td>Varicella zoster virus</td>
</tr>
<tr>
<td>WNS</td>
<td>Wiskott-Aldrich syndrome</td>
</tr>
<tr>
<td>WED</td>
<td>von Willebrand disease</td>
</tr>
<tr>
<td>WVF</td>
<td>von Willebrand factor</td>
</tr>
<tr>
<td>WCC</td>
<td>White cell count</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
Contributors

Chief Editor

Zeshan Qureshi
BM Sc BSc (Hons) MRCPCH
Academic Clinical Fellow, Great Ormond Street, and Institute of Global Health, UCL, UK

Associate Editor

Tina Sajjianhar
MBBS DRCOG DCH FRCPCH FCEM
Consultant in Paediatric Emergency Medicine, Divisional Director for Children and Young People services, Lewisham and Greenwich NHS Trust, UK

Authors

John Jungpa Park
MB ChB MTh
BMedSci (Hons)
Junior Doctor, North Central Thames Foundation School, UK

Chi Hau Tan
MBBS (Hons) GDipSurgAnat
Neurosurgery Registrar, Monash Health, Melbourne, Australia

Anand Goomany
MBChB BSc
Core Surgical Trainee, Bradford Teaching Hospitals Foundation Trust, West Yorkshire, UK

Amy Mitchell
MBChB BSc (Hons) MSc
DipClinEd MRCPCH
Consultant Paediatric Oncologist, Southampton University Hospital Trust, Southampton, UK

David K K Ho
MBChB DTM&H MRCPCH
Clinical Research Fellow, Institute of Child Health, University College London, UK

Christopher Harris
MBChB MRCPCH
Paediatric Neonatal Registrar, St George’s Hospital, London, UK

Mary-Jane Emedo
MBBS BSc MRCPCH
Paediatric Registrar, London Deanery, London, UK

Maxine Wilke
Medical Student, Keele University, UK

Anna Capsomidis
BSc MBChB (Hons) MRCPCH
PGDip (Med Ed) PGC (Healthcare Ethics and Law)
Clinical Research Fellow, UCL, Great Ormond Street Institute of Child Health, UK

May Bisharat
MBBS (Hons) MSc FRCS (Paed Surg)
Registrar in Paediatric Surgery, Evelina Children’s Hospital, London, UK

Rachael Mitchell
MRCPCH MA (CanTab)
Paediatric Registrar, London Deanery, London, UK

Alexander Young
MBChB MSc MRCS PGCME
Trauma and Orthopaedic Surgery Registrar, Severn Deanery, UK

Marie Monaghan
MBBS BSc (Hons) MRCPCH
Paediatric Registrar, London Deanery, UK

Antonia Hargadon-Lowe
BMBS BMedSci MRCPCH PGC (Paed)
Paediatric Registrar, London Deanery, London, UK
Sadhanandham Punniyakodi
MBBS MRCPCH MSc
Senior Training Fellow in Paediatric Endocrinology, The Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne

Hannah Linford
BMBS MRCPCH
Paediatric Registrar, KSS Deanery, UK

Christopher John Grime
MBChB MRCPCH
Paediatric Registrar, London Deanery, UK.

Philippa King
BSc MBChB MRCPCH MSc
Academic Clinical Fellow, Medical Microbiology, East of England Deanery, UK

Claire Bryant
BMedSc BMBS
Junior Doctor, South Thames Foundation School, London, UK

Andy Hall
MBChB MRCS DCH ONS
ENT Specialist Registrar, Great Ormond Street, UK

Michael Malley
MA (Hons) Cantab
MBBS MRCPCH
Paediatric Registrar, London Deanery, UK

Valitsa Tziaferi
MD MRCPCH MSc
Consultant in Paediatric Endocrinology & Diabetes, Leicester Royal Infirmary, UK

Maanasa Polubothu
BSc MBChB MSc
MRCPCH PGDip (Genomic Medicine) Academic Clinical Fellow, London Deanery, UK

Stephen D Marks
MD MSc MRCP
DCH FRCPCH
Consultant Paediatric Nephrologist, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.

Anita Demetriou
MBBS BSc MRCPCH DTMH
Paediatric Registrar, London Deanery, UK

Debsree Das
MBBS BSc MRCPCH
Paediatric Registrar, London Deanery, UK

Isabel Mawson
MBBS BSc MRCPCH
Paediatric Registrar, London Deanery, UK

Anna Chadwick
MBBS BSc MRCPCH
Paediatric Registrar, London Deanery, UK

Amy Moran
MBBS MRCPCH
Paediatric Registrar, London Deanery, UK

Alice Armitage
MBBS BSc MRCPCH
Academic Clinical Fellow, Paediatrics, London Deanery, UK

Kunal Babla
BSc(Hons) MBBS MSc
MRCPCH MAcadMed
Neonatal Registrar, London Deanery, UK

Sam Thenabadu
MBBS MRCP DRCOG DCH
MA Clin Ed FCEM MSc (Paed) FHEA
Consultant Adult & Paediatric Emergency Medicine. Honorary Senior Lecturer, King's College London.
Stephanie Connaire
Final Year Medical Student, Cardiff University, Cardiff, UK

Zainab Kazmi
BSc (Hons) MBChB
Academic Foundation Doctor and Honorary Clinical Fellow, University of Glasgow

Pooja Parekh
MBBS
Paediatric Trainee, London Deanery, UK

Expert Reviewers

Dr Vandy Bharadwaj
Consultant Paediatric Haematologist, Southampton Children’s Hospital, Southampton, UK

Prof. Robert Tulloh
MA DM FRCP FRCPC
Consultant Paediatric Cardiologist, Bristol Royal Hospital for Children, UK. Honorary Professor of Congenital Cardiology and Pulmonary Hypertension, University of Bristol

Prof. David Walker
Professor of Paediatric Oncology, Children’s Brain Tumour Research Centre, Nottingham, UK

Mr RA Wheeler
MS FRCS LLB (Hons) LLM
Consultant Neonatal & Paediatric Surgeon. Director, Department of Clinical Law. University Hospital of Southampton, UK.

Mr Theo Joseph
FRCS
ENT Consultant, Royal National Throat Nose and Ear Hospital, London, UK

Dr Victoria Jones
MRCPCH
Consultant Paediatrician, North Middlesex University Hospital, UK

Dr Anne-Marie Ebdon
MBBS MRCPCH FRACP
Consultant Paediatrician, Queen Mary’s Hospital for Children, Epson & St.Heliers University Hospitals NHS Trust, UK

Dr Sarah K Clegg
MBChB BSc MRCPUK MRCPCH
Consultant Paediatrician, Department of Community Child Health, Edinburgh, UK

Dr Solomon Kamal Uddin
MBBS BMedsce
Paediatric Registrar, London Deanery, UK

Dr Delan Devakumar
MBChb MSC MRCPCH DTM&H MFFPH PhD
Public Health Registrar, London Deanery, UK

Dr Khadija H Aljefri
MBChB, MRCP (UK), MRCP (Derm)
Dermatology Registrar, Royal Victoria Infirmary, Newcastle upon Tyne, UK

Mr Neil Tickner
MRPharmS PGDip. Clin. Pharm
Lead Pharmacist Paediatrics, St Mary’s Hospital, London, UK

Stephanie Connaire
Final Year Medical Student, Cardiff University, Cardiff, UK

Dr Pooja Parekh
MBBS
Paediatric Trainee, London Deanery, UK

Bianca Davis
School Teacher, Head of Personal Social and Health Education, London, UK

Dr Sreena Dias
MB CHB MRCPCH
Consultant Paediatrician, King’s College Hospital, London, UK

Mr Theo Joseph
FRCS
ENT Consultant, Royal National Throat Nose and Ear Hospital, London, UK

Dr Simon Chapman
BA BM FRCPCH
Consultant Paediatrician, King’s College Hospital, London, UK

Dr Isabel Farmer
MB ChB MRCPCH
Consultant Paediatrician, King’s College Hospital, London, UK

Tabatha English
BSc (Hons) RM
Midwife, Lewisham Hospital, London, UK

Kelly Frogbrook
Pgdip RN
Paediatric Nurse, Queen Elizabeth Hospital, London, UK

Dan Purnell
Lead Resuscitation Officer, Lewisham and Greenwich Healthcare NHS Trust

Dr Daniel Langer
BSc (Hons) MRCPCH DPID
Consultant in Acute & Ambulatory Paediatrics. Special interest in paediatric infectious diseases (SPIN ID) and global child health

Lydia Shackshaft
Medical Student, King’s College London, UK

Sammie Mak
Medical Student, Leeds University, UK

Ben Evans
Medical Student, University of Newcastle, UK
Contents

SECTION 1: CORE TOPICS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHAPTER 1: ADOLESCENT MEDICINE</td>
<td>ALICE ARMITAGE</td>
</tr>
<tr>
<td>7</td>
<td>CHAPTER 2: ASSESSMENT AND MANAGEMENT OF THE ACUTELY UNWELL CHILD</td>
<td>CHRISTOPHER HARRIS</td>
</tr>
<tr>
<td>18</td>
<td>CHAPTER 3: CARDIOLOGY</td>
<td>HANNAH LINFORD</td>
</tr>
<tr>
<td>35</td>
<td>CHAPTER 4: COMMUNITY PAEDIATRICS</td>
<td>ANTONIA HARGADON-LOWE</td>
</tr>
<tr>
<td>50</td>
<td>CHAPTER 5: ENT</td>
<td>ANDY HALL</td>
</tr>
<tr>
<td>60</td>
<td>CHAPTER 6: ENDOCRINOLOGY</td>
<td>ZESHAN QURESHI, VAÏTSA TZIAFERI, SADHANANDHAM PUNNIYAKODI, MARYLYN-JANE EMEDO AND CLAIRE BRYANT</td>
</tr>
<tr>
<td>92</td>
<td>CHAPTER 7: GASTROENTEROLOGY</td>
<td>MAXINE WILKE, POOJA PAREKH, AND ZESHAN QURESHI</td>
</tr>
<tr>
<td>113</td>
<td>CHAPTER 8: GENETICS</td>
<td>ISABEL MAWSON, CHRISTOPHER HARRIS, MAXINE WILKE AND ZESHAN QURESHI</td>
</tr>
<tr>
<td>130</td>
<td>CHAPTER 9: HAEMATOLOGY</td>
<td>AMY MITCHELL AND ANNA CAPSOMIDIS</td>
</tr>
<tr>
<td>141</td>
<td>CHAPTER 10: IMMUNOLOGY AND ALLERGY</td>
<td>MAANASA POLUBOTHU</td>
</tr>
<tr>
<td>149</td>
<td>CHAPTER 11: INFECTION</td>
<td>PHILIPPA KING, ZESHAN QURESHI AND DAVID HO</td>
</tr>
<tr>
<td>166</td>
<td>CHAPTER 12: INTENSIVE CARE</td>
<td>KUNAL BABLA AND SAM THENABADU</td>
</tr>
<tr>
<td>173</td>
<td>CHAPTER 13: CHILDREN AND THE LAW</td>
<td>ZESHAN QURESHI</td>
</tr>
<tr>
<td>177</td>
<td>CHAPTER 14: METABOLIC MEDICINE</td>
<td>ZESHAN QURESHI, STEPHANIE CONNAIRE AND ZAINAB KAZMI</td>
</tr>
<tr>
<td>186</td>
<td>CHAPTER 15: NEONATOLOGY</td>
<td>CHRISTOPHER HARRIS AND ZESHAN QURESHI</td>
</tr>
<tr>
<td>212</td>
<td>CHAPTER 16: NEUROLOGY</td>
<td>JOHN JUNGPA PARK, ZESHAN QURESHI AND DEBASREE DAS</td>
</tr>
<tr>
<td>245</td>
<td>CHAPTER 17: NUTRITION</td>
<td>CHI HAU TAN</td>
</tr>
<tr>
<td>259</td>
<td>CHAPTER 18: ONCOLOGY</td>
<td>ANNA CAPSOMIDIS AND AMY MITCHELL</td>
</tr>
<tr>
<td>270</td>
<td>CHAPTER 19: ORTHOPAEDIC AND RHEUMATOLOGICAL DISORDERS</td>
<td>ANAND GOOMANY AND ALEXANDER YOUNG</td>
</tr>
<tr>
<td>292</td>
<td>CHAPTER 20: PUBLIC HEALTH</td>
<td>CHRISTOPHER HARRIS</td>
</tr>
<tr>
<td>297</td>
<td>CHAPTER 21: RENAL MEDICINE</td>
<td>ZESHAN QURESHI, RACHAEL MITCHELL AND STEPHEN MARKS</td>
</tr>
<tr>
<td>313</td>
<td>CHAPTER 22: RESPIRATORY MEDICINE</td>
<td>CHRISTOPHER GRIME</td>
</tr>
<tr>
<td>330</td>
<td>CHAPTER 23: SKIN CONDITIONS</td>
<td>MAANASA POLUBOTHU</td>
</tr>
<tr>
<td>342</td>
<td>CHAPTER 24: SURGERY</td>
<td>MAY BISHARAT</td>
</tr>
</tbody>
</table>
SECTION 2: CLINICAL CASES

372 CHAPTER 1
CLINICAL CASES: STANDARD
ALL AUTHORS

438 CHAPTER 2
CLINICAL CASES: INTERMEDIATE
ALL AUTHORS

487 CHAPTER 3
CLINICAL CASES: DIFFICULT
ALL AUTHORS

SECTION 3: CLINICAL SKILLS

507 CHAPTER 1
HISTORY TAKING
ZESHAN QURESHI, CHRISTOPHER HARRIS AND MICHAEL MALLEY

526 CHAPTER 2
EXAMINATION
AMY MORAN AND ZESHAN QURESHI

604 CHAPTER 3
COMMUNICATION
ANNA CHADWICK AND MICHAEL MALLEY

613 CHAPTER 4
PRACTICAL SKILLS
MICHAEL MALLEY, ZESHAN QURESHI, ANITA DEMETRIOU AND MARIE MONAGHAN

648 CHAPTER 5
PRESCRIBING
MICHAEL MALLEY AND MARIE MONAGHAN

SECTION 4: BECOMING A PAEDIATRICIAN

658 CHAPTER 1
UNDERGRADUATE AND POSTGRADUATE ASSESSMENTS IN PAEDIATRICS
MICHAEL MALLEY AND MARIE MONAGHAN

665 CHAPTER 2
A GUIDE TO BEING A JUNIOR DOCTOR IN PAEDIATRICS
MARIE MONAGHAN AND MICHAEL MALLEY

674 CHAPTER 3
CAREERS IN PAEDIATRICS
MARIE MONAGHAN AND MICHAEL MALLEY
ADOLESCENT MEDICINE
ALICE ARMITAGE

1.01
APPROACH TO THE ADOLESCENT CONSULTATION

Adolescence is the transitional phase of growth and development between childhood and adulthood. An adolescent is defined by the World Health Organisation as a person between 10 and 19 years of age. There is increasing recognition of the specific problems of this age group, including trauma, mental health issues, pregnancy and sexually transmitted diseases. The rise in healthcare usage in adolescence is multifactorial; increasing survival from chronic childhood conditions, use of drugs and alcohol, and risk-taking behaviour all play a role, and advances in perinatal care and immunisation have shifted the burden of disease away from the under-fives. Understanding the unique needs of this age group is a core skill for any physician. The law relating to children and adolescents is covered in Chapter 1.13.

Adolescent History Taking

It is important to adapt the approach to the needs of the adolescent age-group. At the start of a consultation, consider the following:

- Always speak to the patient, not to their parent or carer, unless there is no alternative.
- Ask the patient if they would like to speak to alone or ask them if they would like someone to be present, such as a parent or friend.
- For any examination, offer a chaperone.
- Talk in an age-appropriate fashion. It is easy to alienate an adolescent patient by appearing patronising or by using medical jargon.
- Try to anticipate issues around consent and confidentiality.

The psychosocial history is vital to the adolescent history. Many presentations will stem from an issue like drug use, a fight with a partner or worries about sexuality. A useful aide-memoire is the HEADSS tool, shown in Table 1. In general, start with more open questions and then focus questions to the information given. A common reason for missing important issues is making assumptions; for example, thinking that all young people live at home with their parents or that all young people are heterosexual.
1.02 ASSESSMENT AND MANAGEMENT OF THE ACUTELY UNWELL CHILD

CHRISTOPHER HARRIS

INTRODUCTION

Clinicians are fearful of treating children and infants in the Emergency Department (ED), and, more generally, of making medical decisions concerning children. Junior doctors manage children in many settings (Box 1).

Box 1: Settings in which unwell children may be encountered

- Primary care.
- Emergency Department.
- Paediatric Emergency Department.
- Paediatric wards.
- Adult specialties with paediatric cover (surgery, orthopaedics, ENT and dermatology).

This chapter provides a framework for assessing any child that presents for medical attention to ensure they receive timely and effective care, with a particular focus on dealing with the very sick child.

When approaching a potentially sick child, bear in mind that children are not just small adults. Different challenges and techniques must be addressed to get to the bottom of the problem quickly.

Consider the following:

- The parents or carer may not have the whole story if the child has been in the care of someone else, and so a collateral history may be necessary.
- The parents’ “sixth sense” regarding their child should always be taken seriously, but equally, parents may underestimate the seriousness of their child’s condition.
- Younger children may not be able to give any history, or the history given may be misleading.
- All children, but particularly younger infants, may have underlying congenital abnormalities that have remained undetected until presentation in extremis.
Normal Cardiorespiratory Parameters

In children, the normal range for heart rate, blood pressure and respiratory rate vary significantly with age. Table 1 summarises these features.

The Paediatric ECG

Interpreting an electrocardiogram (ECG) in children is not the same as with an adult because the heart is physiologically different. Points to note are:

- Normal heart rate is much higher. A heart rate of over 150 bpm is normal in a newborn. Conversely, for a newborn, a heart rate less than 100 needs further assessment.
- Normal marked sinus arrhythmia. This is because the heart rate varies dramatically with breathing.
- Cardiac axis is deviated to the right in the newborn. This is because there is marked right ventricular hypertrophy, as the right ventricle pumps blood against a high-resistance collapsed lung in utero. Often, the right ventricle is captured by placing an additional lead (V4R) in the fifth intercostal space, at the mid clavicular line on the right. V1 (looking directly at the right ventricle) and V2-V3 often have a dominant R wave.
- Possible partial right bundle branch block. This manifests as a normal QRS complex, plus an RSR pattern (M shape) in V1.
- T wave inversion. This is normal in leads V1-3 and potentially V4 as well.
- Q waves. These are normal in the inferior (AVF, II, III) and left precordial leads (V5-6).

The normal ranges for ECG interpretation change with age. Table 2 and Table 3 show the QRS complex and corrected QT interval. Figure 1 shows a normal ECG and Figure 2 shows the calculation of the QT interval.
Tachycardia may result from physiological processes that alter the sympathetic/parasympathetic tone, resulting in a sinus tachycardia. Such causes include:

- Excessive activity.
- Crying/being upset.
- Stress.

It may also be caused by a secondary problem outside the heart, like fever, infection, hyperthyroidism, anaemia or any other problem causing a high metabolic rate. It is rarely due to a primary cardiac cause. A primary cause is more likely if tachycardia is particularly high or an isolated finding.

TABLE 1: Normal values for heart rate, blood pressure and respiratory rate in children. Source: Advanced Paediatric Life Support, the practical approach. Fifth edition – Advanced Life support group.

<table>
<thead>
<tr>
<th>Normal ranges of routine observations in children.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate.</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td><1 year</td>
</tr>
<tr>
<td>Systolic blood pressure (50th centile).</td>
</tr>
<tr>
<td>Respiratory rate.</td>
</tr>
</tbody>
</table>

TABLE 2: QRS ranges in children

<table>
<thead>
<tr>
<th>Age</th>
<th>Cardiac Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week – 1 month.</td>
<td>+110° (range +30° to +180°).</td>
</tr>
<tr>
<td>1 month – 3 months.</td>
<td>+70° (range +10° to +125°).</td>
</tr>
<tr>
<td>3 months – 3 years.</td>
<td>+60° (range +10° to +110°).</td>
</tr>
<tr>
<td>Over 3 years.</td>
<td>+60° (range +20° to +120°).</td>
</tr>
<tr>
<td>Adult.</td>
<td>+50° (range -30° to +105°).</td>
</tr>
</tbody>
</table>

TABLE 3: Corrected QT interval

<table>
<thead>
<tr>
<th>Age</th>
<th>QT Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 months.</td>
<td><0.49 seconds</td>
</tr>
<tr>
<td>>6 months.</td>
<td><0.44 seconds</td>
</tr>
</tbody>
</table>

Tachycardia

Location of the QT interval, from beginning of Q to end of T in the same cycle. Note that this needs to be compared to the preceding RR interval to get the corrected QT interval (QT/√RR).
TABLE 6: Continued

<table>
<thead>
<tr>
<th>Disease</th>
<th>Definition</th>
<th>Presentation</th>
<th>Management</th>
</tr>
</thead>
</table>
| Hypoplastic left heart syndrome. | A group of defects affecting the left side of the heart (valves and chambers) in which the structures are too small to support systemic output. | - This is usually antenatally diagnosed – with an aim for delivery at a cardiac centre.
 - It presents as a breathless, severely cyanotic and compromised neonate soon after birth.
 - ECG shows absent ventricular forces. | - A prostaglandin infusion is initially started to maintain duct patency.
 - Urgent transfer to a specialist cardiac unit is needed.
 - There is a three stage surgical treatment (e.g. Norwood, Glenn, then Fontan). The ultimate aim is for the right ventricle to remain the systemic ventricle, with blood passively flowing to the lungs. Heart transplant is another option. |
| Tricuspid atresia. | The tricuspid valve (between the right atrium and right ventricle) is blocked or absent. | - Cyanosis is present soon after birth.
 - A systolic murmur is heard at the left lower sternal edge if a VSD is present or a continuous murmur below the left clavicle if a PDA is present. | Surgical correction occurs by a course of several staged procedures. Initial palliation may involve inserting a systemic-pulmonary shunt (e.g. Blalock-Taussig shunt).
 - Systemic venous return is connected to the pulmonary artery, bypassing the right ventricle (Fontan circulation). |
| Complete atrioventricular septal defect (AVSD). | A large ASD which is continuous with a large VSD; all four chambers of the heart are communicating with one another. This causes increased blood flow to the lungs as well as less effective drainage, thereby promoting pulmonary hypertension and heart failure. | - Heart failure and cyanosis.
 - This is the abnormality most often associated with Down syndrome.
 - Ejection systolic murmur at left upper sternal edge (pulmonary flow murmur).
 - pansystolic murmur at the apex (mitral regurgitation).
 - Fixed splitting S2 (ASD).
 - Loud S2 (pulmonary hypertension). | The heart failure is medically managed.
 - The VSD and ASD are surgically closed and the atrioventricular valve is surgically repaired (to fashion separate mitral and tricuspid valves). |

Note that smaller AVSDs may be acyanotic.

Patent ductus arteriosus

Atrial septal defect

Transposition of great arteries

Ventricular septal defect

Oxygen rich blood

Oxygen poor blood

Mixed blood

AO = Aorta
PA = Pulmonary artery
LA = Left atrium
RA = Right atrium
LV = Left ventricle
RV = Right atrium

Transposition of the great arteries

Ventricular Septal Defect.
Normal Development and the Developmental Assessment

Developmental history is often missed when seeing children in acute settings or in primary care. This may be due to time constraints in a busy Emergency Department (ED) or outpatient clinic. However, some information can be gathered quickly with adequate knowledge and practice. Picking up developmental problems early can have a significant impact on that child’s outcome. The time taken and depth of questioning on development depends on the clinical scenario (Table 1).

TABLE 1: Developmental assessment in different settings

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Suggested Approach</th>
</tr>
</thead>
</table>
| 3-year-old child presenting to ED with a fever and ear pain, and no known developmental concern. | Brief questioning about milestones and parental concerns, e.g.:
 • Do you feel your child is able to do the same things other 3-year-olds can?
 • At what age did she smile, say her first word and walk? |
| Outpatient clinic review of 2-year-old boy who has had three seizures in the last few months. | More in-depth questioning is required as relevant to the presenting complaint. The number of questions will depend on the answers and whether concerns emerge. Ascertain whether he is similar to other children of his age. Developmental regression should also be enquired about, i.e. has he lost any skills previously developed. To start, ask a couple of questions in each developmental domain to assess whether he is meeting expected targets for his age:
 • Gross Motor. Is he able to jump? Is he able to climb stairs, and if so, how does he do it?
 • Fine Motor. Can he draw a straight line? How big a tower block can he build with building blocks?
 • Language/Hearing. Can he speak in short sentences? Can he obey simple commands?
 • Social/Self-Care. Can he eat with a fork/spoon? Does he socially interact (good eye contact and smiles) with adults and other children?
 • General. Has he lost any skills that he could previously do? |
| Community paediatric outpatient appointment following a referral from nursery school with concerns of development. | In this situation, the reason for the referral is “developmental concerns”, so a full assessment taking approximately one hour is necessary using one of the available tools. |

Developmental Milestones

Development is usually categorised into distinct areas; commonly the following domains are used: “Gross Motor”, “Fine Motor/Vision”, “Language” and “Social/Self-Care” (Table 2). This is done because developmental milestones can often be grouped together, and if one sector is affected but not the others, it may indicate a particular group of pathologies. For example, language delay may be secondary to hearing loss, whereas hearing loss is unlikely to cause isolated gross motor delay.
FIGURE 3

Typical sites of A) accidental injury and B) non-accidental injury.

A) Physical abuse.
- Head injuries tend to involve the parietal bone, occiput and forehead.
- Forehead
- Nose
- Chin
- Elbows
- Palm of hand
- Knees
- Shins
- Ears — especially pinch marks involving both sides of the ear
- The 'triangle of safety' (ears, side of face and neck, top of shoulders)
- Inner aspects of arm
- Back and side of trunk, except directly over the bony spine
- Black eyes, especially if bilateral
- Soft tissues of cheeks
- Intra-oral injuries
- Forearms when raised to protect self
- Chest and abdomen
- Any groin or genital injury
- Inner aspects of thighs
- Soles of feet

B) Neglect.
- Protection from witnessing violence.
- Provision of emotional warmth.

Sometimes, neglect is the only concern preceding a child death from abuse, and therefore the significance of neglect should not be underestimated. Every paediatrician assessing children should be alert to signs of neglect of a child's welfare. One of the best ways to chart wellbeing is through growth parameters,
CONTENTS

51 Ear Pathology
51 Hearing Loss
51 Otitis Media
51 Mastoiditis
52 Chronic Otitis Media with Effusion (OME)
52 Nasal Pathology
52 Rhinosinusitis
52 Nasal Polyps
52 Epistaxis
53 Upper Airway Obstruction
53 Stertor and Stridor
53 Airway Foreign Body
53 Choking
55 Infection
55 Periorbital and Orbital Cellulitis
55 Tonsillitis
56 Peritonsillar Abscess (Quinsy)
56 Infectious Mononucleosis (Glandular Fever)
56 Croup
56 Acute Epiglottitis
57 Bacterial Tracheitis (Pseudomembranous Croup)
57 Paediatric Neck Masses
58 References and Further Reading
(Figure 2) should be delivered, followed by five abdominal thrusts in children more than one–year-old (Figure 3), or five chest thrusts in children less than 1–year-old (Figure 4). The patient should be reassessed after each intervention, and the process should be repeated as necessary.

Unconscious Child

In a very severe obstruction, the child may become unconscious. In this case, attempt to remove anything seen in the mouth with one finger sweep, and then follow the paediatric basic life support, giving rescue breaths.

INFECTION

Periorbital and Orbital Cellulitis

Periorbital Cellulitis

Periorbital cellulitis is infection and inflammation of the skin and eyelid anterior to the orbital septum (unlike orbital cellulitis). This condition can be secondary to a sinus infection, but can also be due to a minor scratch or insect bite. In its most minor form, there is mild eyelid swelling without any systemic symptoms.

Orbital Cellulitis

Progress of periorbital cellulitis can lead to intra–orbital spread of infection causing orbital cellulitis, with red flag signs of proptosis (bulging of the eye), limitation of eye movement and chemosis (conjunctival swelling). Colour vision and visual acuity are important to document, as these are sensitive features of optic nerve inflammation. A paramount concern is the potential for optic nerve injury and permanent loss of sight. Intracranial spread of the infection can occur on rare occasions.

Management

This condition is best managed with a multi–disciplinary approach involving paediatric, ENT, maxillofacial and ophthalmology teams.

Minor cases of periorbital cellulitis usually settle with oral antibiotics. Moderate cases need intravenous therapy. If concerns exist of intra–orbital infection, a computed tomography (CT) scan of the brain/orbit needs to be arranged urgently. Surgical intervention may require either an external or endoscopic approach to drain the pus, depending on the extent and position of the pathology.

Tonsillitis

Aetiology

Tonsillitis involves inflammation of the tonsils. It may be viral or bacterial in origin. Bacterial causes are more likely in the absence of cough, tender cervical lymphadenopathy, high fever and tonsillar exudates. Classically, bacterial infection is with group A streptococcus.

Clinical Features

Clinical features include:
- Sore throat.
- Pain on swallowing (odynophagia).
- Fever.
- Headache.
- Reduced oral intake.

On examination, the tonsils are red and enlarged with possible tonsillar exudate (Figure 5). Cervical lymph nodes may also be enlarged and tender. Simple analgesia, antipyretics and adequate

FIGURE 2

Back blow. The infant is placed over the leg to allow gravity to assist. The centre of the infant’s back is struck firmly with the palm of the hand five times. In an older child, this is done keeping them upright, but bending them forward at the waist.

FIGURE 3

Abdominal thrust. Previously called the Heimlich manoeuvre. The person performing the manoeuvre makes a fist with one hand, and grabs it with the other. They then rapidly pull back and upwards through the abdomen to deliver each thrust.

FIGURE 4

Chest thrusts. This has a similar technique to chest compressions. Two fingers are placed at the base of the sternum. Five thrusts are then delivered, compressing downward about 1.5 inches.

FIGURE 5

Bilaterally enlarged tonsils with exudate.
GLUCOSE REGULATION

Type 1 Diabetes Mellitus
Diabetes mellitus (DM) is a condition of elevated plasma glucose. There are two main types:
- **Type 1 diabetes (T1DM).** An absolute deficiency of the pancreatic hormone insulin.
- **Type 2 diabetes (T2DM).** Failure to appropriately make use of insulin to metabolise glucose.

The vast majority of cases in childhood are T1DM, although with the increasing obesity rates, T2DM is becoming more common. The World Health Organisation (WHO) has formulated a set of diagnostic criteria based on blood glucose measurements, dependent on the presence or absence of typical symptoms of the disorder (Figure 1).

Aetiology
T1DM is characterised by autoimmune T-cell mediated damage to the β islet cells of the pancreas. The β cells are responsible for insulin production and their destruction leads to insulin deficiency. Normally, insulin acts to reduce blood glucose through stimulating glucose uptake from the blood.
1.07
GASTROENTEROLOGY
MAXINE WILKE POOJA PAREKH, AND ZESHAN QURESHI

CONTENTS

93 Malabsorption Disorders
93 Inflammatory Bowel Disease
97 Coeliac Disease
99 Oesophageal Disorders
99 Gastro-Oesophageal Reflux Disease
102 Eosinophilic Oesophagitis
102 Gastric Disorders
102 Gastritis
102 Peptic Ulceration
103 Motility Disorders
103 Constipation
104 Toddler’s Diarrhoea
105 Hepatic Disorders
105 Hepatitis
106 Abdominal Pain-Related Functional Gastrointestinal Disorders
106 Irritable Bowel Syndrome
107 Functional Abdominal Pain
107 Abdominal Migraine
108 Additional Pathology
108 Gastroenteritis
109 Mesenteric Adenitis
110 Infantile Colic
111 Meckel Diverticulum
111 References and Further Reading
113

APPROACHING GENETIC PROBLEMS

All cells in the human body, except gametes, have 46 chromosomes arranged into 23 pairs. Autosomes account for 22 of these pairs. The 23rd pair is made up of two sex chromosomes. In addition, every cell carries DNA within its mitochondria.

Through the processes of transcription and translation, genes enable each cell to build all the required proteins. Errors in an individual's genetic makeup can therefore affect every cell in the body. Genetic syndromes can be caused by problems at the gene or chromosome level or by errors in the packaging of the DNA. Detailed below are some of the mechanisms by which genes cause disease.

Patterns of Genetic Disease

Mendelian Inheritance

This describes a pattern of inheritance caused by mutations on a single gene, as seen in neurofibromatosis and Marfan syndrome.

Multifactorial, Polygenic Disorders

Some genetic mutations increase the risk of a disease, without necessarily causing the disease. For example, a mutation in the NOD2/CARD15 gene (which relates to the immune system) is associated with a slightly increased risk of Crohn's disease, though most people with the mutation remain healthy. This could be due to a certain environmental trigger required to make the genetic defect apparent, or it may be because other genes compensate for any problems related to the mutant gene. Such genes are said to have a low "penetrance", which means a low percentage of those with the defective gene (genotype) express the symptoms of the disease (phenotype).

Chromosomal Disorders

These disorders result from the absence or duplication of entire chromosomes. Examples include Down syndrome (Trisomy 21), Edward syndrome (Trisomy 18), Patau syndrome (Trisomy 13) and Turner syndrome (45,X).
TABLE 3: Autosomal dominant conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Gene/Chromosome Affected</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achondroplasia.</td>
<td>FGFR3 gene (fibroblast growth factor receptor 3) on chromosome 4.</td>
<td>Short limbs, thoracolumbar kyphosis, disproportionally short stature, megaloecephaly with prominent forehead, midfacial hypoplasia.</td>
</tr>
<tr>
<td>Marfan syndrome.</td>
<td>Fibrillin 1 (FBN1) gene.</td>
<td>Heart defects, ophthalmological abnormalities, spontaneous pneumothorax, tall and thin, long limbs, spinal scoliosis and recurrent hernias.</td>
</tr>
<tr>
<td>Neurofibromatosis Type 1.</td>
<td>Caused by defects in the NF1 gene at 17q11.2 which produces neurofibromin.</td>
<td>6 or more café-au-lait spots >5mm in prepubertal and >15mm in postpubertal children. Neurofibromas, axillary freckling, Lisch nodules, optic glioma.</td>
</tr>
<tr>
<td>Neurofibromatosis Type 2.</td>
<td>Type 2 caused by defects in the NF2 gene at 22q11.2 which produces schwannomin.</td>
<td>Acoustic neuromas, meningiomas, neurofibromas, schwannomas, juvenile posterior capsular cataracts.</td>
</tr>
</tbody>
</table>
Robertsonian translocation, showing all six possible outcomes when a mother with a balanced Robertsonian translocation has a child with a father with normal chromosomes. The trisomy 21 cases are highlighted in blue.

Mosaicism caused by mitotic nondisjunction. The red line depicts one chromosome. Patients with mosaic Down syndrome usually have a less severe phenotype, although severity is very variable. Note that offspring will only be affected if gamete-producing cells carry the defect.
ANAEMIA

Overview of Anaemia

Anaemia is defined as a reduction in haemoglobin, and is due to a variety of possible causes. It is important to interpret the haemoglobin (Hb) level in relation to the age specific normal values (Table 1).

Aetiology

Three main processes lead to anaemia:

1. Failure of red cell production. e.g. iron deficiency, aplasia.
2. Ineffective red cells. e.g. haemoglobinopathies, sickle cell anaemia.
3. Increased destruction of red cells. e.g. hereditary spherocytosis.

Haemoglobinopathies are an important cause of anaemia. A haemoglobinopathy results in an abnormality in red cell structure. This may result in impaired oxygen carriage or decreased red cell life expectancy, thus giving rise to anaemia.

There are two categories of inherited haemoglobinopathies:

1. Structurally abnormal haemoglobin molecules. e.g. sickle cell anaemia.
2. Impaired production of globin chains. e.g. beta-thalassaemia.

The majority of haemoglobinopathies are autosomal recessive conditions. This means those with only one allele are asymptomatic carriers, i.e. sickle cell trait, beta-thalassaemia trait. Only homozygotes present with clinically detectable disease. These diseases have persisted in endemic areas because the asymptomatic presence of one allele (i.e. being a carrier) offers some protection from malaria.
Management
Acute management is focused on identifying the underlying process and involves appropriate analgesia, oxygenation and treatment of associated sepsis, as outlined above.

Long-term outpatient management involves:
- Life-long prophylactic penicillin.
- Appropriate vaccinations (additional pneumococcal and influenza vaccines on top of routine schedule).
- Close monitoring for complications such as acute haemolysis, and painful episodes.

Corticosteroids, blood transfusions and hydroxyurea (which increases foetal Hb levels) may be helpful in those with severe episodes.

The requirement for long-term transfusions puts the child at risk of iron overload. This can be monitored by serum ferritin but more often now specialist MRI scanning techniques are being used to identify degree of iron overload. Other than limiting transfusions the other treatment of iron overload is to use an iron chelator such as desferrioxamine usually via long-term subcutaneous infusion.

Haemopoietic stem cell transplantation (HSCT) is increasingly being utilised for haemoglobinopathies. The principle is replacement of the child’s bone marrow, thereby fixing the underlying haemoglobinopathy. However, HSCT has important side effects, including risk of death during the transplant itself. HSCT is reserved for severe disease (four or more vaso-occlusive crises, acute chest crises despite therapy with hydroxyurea and disease in the central nervous system).

Complications
Complications are shown in Table 4.

Prognosis
Early identification of affected children in routine post-natal screening in many countries like the UK can be helpful in managing patients from an early age. In the UK, 99% of children with sickle cell survive to 16-years-old, but sickle cell accounts for 16% of all deaths in West African countries.

Thalassaemia
Thalassaemia is a heterogeneous group of inherited conditions with autosomal recessive inheritance in which abnormal haemoglobin is produced in low quantity. As with sickle cell disease, the presence of thalassaemia trait (having one thalassaemia gene and one normal gene) confers some protection from malaria, thus giving carriers a selective survival advantage.

Classification
Thalassaemias are classified according to which chain of the haemoglobin molecule is affected.
- In α-thalassaemia, production of the α globin chain is affected.
- In β-thalassaemia, production of the β globin chain is affected.

The most common clinical condition is β-thalassaemia major, which is characterised by a total absence of production of adult β-globin chains. β-thalassaemia intermedia is also autosomal recessive, but has milder symptoms. β-thalassaemia trait (with one normal gene) is usually asymptomatic.
OVERVIEW OF THE IMMUNE SYSTEM

The immune system combats the numerous microorganisms the body encounters daily. The body's immune response to infection has both innate and adaptive components. Disorders of the immune system can lead to immunodeficiency, allergy and autoimmune disease.

Innate Immune System

The innate immune system refers to the immune defences that exist in all individuals, regardless of prior pathogen exposure. Therefore, innate immunity can be elicited immediately. It serves as the body's first-line defence. Its key components are detailed below.

Physical Barriers
- Tight junctions. These are found between cells in the skin and mucous membranes.
- Secretions. These include mucus, bile, enzymes and acid.

Cells that Secrete Inflammatory Mediators
- Natural Killer Cells. Cytotoxic lymphocyte cells able to identify foreign cells and trigger cell death.
- Mast Cells. White cells containing toxic granules including histamine which can be triggered to burst or "degranulate" upon activation.
- Macrophages. Large white blood cells capable of phagocytosis, able to engulf and digest cellular debris, microbes and foreign substances.

Cells that Detect Pathogens
- Cells with Toll-like Receptors. Receptors found on the membranes of macrophages and dendritic cells that detect microbes or parts of microbes (Pathogen-associated molecular patterns (PAMPS)).
- Antigen Presenting Cells. These cells are capable of engulfing and presenting foreign antigens to T cells to elicit an adaptive immune response. Examples include dendritic cells, some macrophages and some types of B cells.
An allergic reaction is an exaggerated reaction to an allergen in a normally functioning immune system. It comes under the broader remit of hypersensitivity reactions, which also includes autoimmunity. An allergen is a non-parasitic antigen that can elicit a type I hypersensitivity reaction.

Four types of hypersensitivity reactions are widely recognised. Type V is also included, though its existence is more debatable, as shown in Table 3.

Atopic Triad
The atopic triad comprises:
- Eczema.
- Rhinitis.
- Asthma.

Classically, these develop in a typical sequence, alongside food allergy, and this is referred to as the allergic march (Figure 2). Atopic individuals are likely to have a genetic predisposition to Type I hypersensitivity reactions in response to common allergens. Circulating levels of IgE are elevated and immunomodulatory cytokines may reveal a positive response of IgE to a specific allergen. In such tests, the patient's serum is exposed to a specific antigen. If the patient has IgE antibodies that bind to the antigen, they are then visualised by the use of a second antibody that binds specifically to IgE.

Treatment of atopy is largely symptomatic and focuses on dampening the allergic response. Owing to its genetic component, atopy tends to run in families, although environmental exposure to allergens plays a large part in the disease course. The prevalence of atopy is increasing in industrialised areas. The hygiene hypothesis postulates that this increased prevalence is the result of better hygiene, which has decreased human exposure to microbes. This has caused a shift in the immune response from the cells involved in fighting infection to those involved in...
CONTENTS

150 Immunisation
 150 Introduction
 150 Different Types of Vaccines
 150 The Routine Vaccination Schedule
 151 Complications
 151 Contraindications
151 Approach to a Child with Fever
 151 Definition
 151 Temperature Regulation
 151 Assessing a Child with Fever
156 Viral Infections
 156 Human Herpes Virus
 157 Varicella Zoster Virus
 158 Epstein-Barr Virus
 158 Influenza
 158 Parainfluenza
 158 Adenovirus
 159 Parvovirus B19
 159 Measles
160 Mumps
160 Rubella
160 Enterovirus
161 HIV

162 Bacterial Infections
 162 Staphylococcal Infections
 162 Streptococcal Infections
 162 Meningococcal infections
 163 Lyme Disease
 163 Typhoid
 163 Escherichia Coli
 163 Tuberculosis
 164 Chlamydia
 164 Gonorrhoea

164 Parasitic Infections
 164 Threadworm
 164 Malaria

165 References and Further Reading
is supportive, with topical anaesthesia and oral rehydration salts if dehydrated. Rarely, children need to be admitted for intravenous fluids.

Herpes Simplex Virus Type 2 (HSV-2)

Genital herpes infection is typically caused by HSV-2 but can also be caused by HSV-1. Be wary of child sexual abuse presenting with genital herpes. The incubation period is around four days, and again prodromal symptoms include itching and pain prior to the onset of genital lesions. Other symptoms include headache, fever, myalgia and back pain. Other manifestations of herpes include meningoencephalitis, eczema herpeticum and eye infections, for which intravenous antiviral agents may be required.

Maternal Genital Herpes

This can potentially cause congenital herpes infection following intrauterine exposure or vertical transmission after vaginal delivery. Neonatal herpes infection can result in central nervous system infection (meningoencephalitis) and disseminated infection with significant risk of disability and death, even if treated (IV aciclovir).

Human Herpes Virus Type 6 (HHV-6)

This is the most common cause of roseola infantum, with an incubation period of about 10 days. In this condition, a child 6-months-old to 2-years-old presents with two to three days of fever, but then as the fever subsides, a widespread rash emerges. It is also known as “sixth disease”, as the rash often emerges on day 6 of the illness. Often, parents get anxious as the child appeared to have been getting better (due to fever subsiding) before the rash emerged, but then the condition is benign, requiring no treatment. HHV-6 is also implicated in encephalitis, hepatitis and febrile convulsions.

Varicella Zoster Virus

Varicella-zoster virus (VZV), also known as chickenpox, is a common childhood infection (*Figure 1*). Children acquire VZV through contact with infected individuals at nurseries, schools or social groups.

The incubation period is 10 to 21 days. Prodromal features include fever, malaise, headache and abdominal pain, usually one to two days before the onset of the rash. The itchy rash is characteristic and begins as macules, progressing to papules and then vesicles which can crust over. These lesions can turn haemorrhagic. The child will be infectious from 48 hours before the onset of the rash until all the lesions have crusted over.

The diagnosis is commonly made clinically, although swabs can be taken and PCR performed if required. Treatment with antiviral medication is unnecessary in healthy children, as most VZV infections are self-limiting. However, treatment is indicated in asymptomatic neonates (if the mother acquires chickenpox within seven days prior to delivery, or up to four days afterwards), in adolescent children and in immunocompromised children who tend to have more severe disease. Varicella-zoster immunoglobulins are used in certain high risk groups.

If fever persists in children with VZV, complications such as bacterial infections caused by *Staphylococcus aureus* and *Streptococcus pyogenes* need to be considered and treated. Other important complications include cerebellar ataxia, varicella encephalitis, pneumonitis, hepatitis, thrombocytopenia and nephritis.

Shingles

Reactivation of VZV typically occurs in adulthood, causing painful eruptions of vesicles in a dermatomal distribution (*Figure 2*). This is known as herpes zoster or shingles. Antiviral medication such as aciclovir and valaciclovir can shorten the duration of pain and lead to quicker resolution of lesions. A shingles vaccine is also now available and routinely offered to elderly adults.
INTRODUCTION

Intensive care is suitable for patients with potentially recoverable life-threatening conditions who would benefit from more detailed observation, treatment and technological support than is available in general wards or high dependency facilities. Complex monitoring equipment is available (Table 1), as well as more advanced interventions. It is also recognised that end-of-life management, including potential organ donation and family bereavement care are integral to caring for critically ill children.

The paediatric intensive care unit serves the most unwell children, who present with a range of both common and rare clinical conditions. The caseload varies throughout the year but will include a mix of emergency medical, surgical and trauma cases from both within the designated paediatrics hospital and the paediatric transfer team from the regional hospitals it supports. Certain planned surgeries may require a high level of airway support or monitoring post-operatively and may also command the need for ICU beds.

The clinician’s priorities, at the bare minimum, involve:

- Regimented airway management and ventilator support.
- Cardiovascular monitoring, invasive circulatory support, with renal assessment and close fluid management.

In addition, assessment of the child’s nutrition, microbiology, radiology, and invasive lines and resuscitation status are all carefully considered on a daily basis.

It is important for the paediatric intensive care unit (PICU) team to remember that as well as delivering high-quality medical care, the team must involve the child’s family in the care plan. This places heavy emphasis on clear and effective communication on all aspects of their child’s care. This can often involve difficult conversations about how unwell a child is or even when it might be appropriate to consider palliative care. The PICU clinician should be sensitive to a family’s wishes and views on their child’s care.
INTRODUCTION

Children are a vulnerable group and may not be able to represent their own wishes. Governments therefore place significant emphasis on making sure children's rights are protected and that their needs are adequately represented. This section will predominantly reflect law in England and Wales, but the underlying principles are more universal.

Children's rights are enshrined in the United Nations Convention on the Rights of the Child, which states:

- Actions taken concerning a child must have their best interests as a primary consideration.
- If the child can voice their opinion, they should be able to express it freely.
- The child's view should be given due weight (based on age and maturity).

In the UK, the Children Act 2004 states that the welfare of the child is paramount, and all professionals dealing with children have the duty to put the child at the centre of their actions. Similar legislation exists across the world.

Incorporating Multiple Viewpoints

In making decisions for children, one should try to incorporate the views of:

- The child. This includes both previously expressed beliefs and current wishes. Someone under 16-years-old may be deemed to have capacity, but even if they do not, their wishes and beliefs must be taken into account, as far as it is in their interests to do so.
- The child's parents. They may provide valuable insight into their child's wishes, beliefs and normal behaviour. Looking at the cultural background of the child and speaking to friends and other relatives may help as well in this regard.
- The multidisciplinary team. This will include nurses, physiotherapists, school teachers and any other professionals involved in the child's care.
1.14 METABOLIC MEDICINE

ZESHAN QURESHI, STEPHANIE CONNAIRE AND ZAINAB KAZMI

WHAT IS METABOLIC DISEASE?

Metabolic disease results from defects in enzymes involved in metabolic pathways of the body leading to accumulation of toxic metabolites, deficiency of essential metabolites or both. Principles of management therefore focus on reversing catabolism, replacing the deficiency and chelating or excreting toxic metabolites. Symptoms and signs as well as clinical course relate to which pathway is involved.

The term “inborn error of metabolism” refers to metabolic disorders that are inherited, usually as a result of a single gene defect affecting a significant enzyme in a metabolic pathway. Hundreds of different metabolic disorders have been described. Although each metabolic disorder is individually rare, collectively, they are not uncommon, with around 1 in every 2500 children in the UK born with an inherited metabolic disease.

Metabolic medicine is becoming increasingly important, particularly in the context of newborn screening, where these diseases can be detected at the pre-symptomatic stage: In the UK today, the diagnosis of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is given via a phone call to the parents of a well baby with a positive screening test, rather than when the child presents with hypoglycaemia and its complications.

This chapter will give a brief introduction regarding when to suspect metabolic disease and an overview of a few common forms of these diseases.

WHEN SHOULD METABOLIC DISEASE BE SUSPECTED?

The wide variation and non-specific presentation of metabolic disease means that a high index of suspicion is required to make the diagnosis. Affected children who are not diagnosed through neonatal screening may present as acutely unwell, with an undiagnosed metabolic disorder. Metabolic disorders tend to present at times of metabolic stress, for example, during the neonatal period (when presentation can be easily mistaken as sepsis), at times of dietary change or with intercurrent illness. Clues can be found in the history, examination and investigations.

Newborn Screening

The neonatal heel prick or Guthrie test is a screening test performed on newborn babies at day five to day eight of life.
COMMON METABOLIC DISORDERS

Galactosaemia

Aetiology
Lactase breaks down dietary lactose to glucose and galactose. Galactose can then be mobilised for energy, via the pathway described in Figure 1. Galactosaemia can result from deficiency in any of the three enzymes: galactokinase, galactose-1-phosphate uridyl transferase (GALT) and UDP galactose-4-epimerase. Enzyme defects lead to an elevated blood galactose level. The most common and severe form is from GALT deficiency.

Clinical Features
Affected infants will often present in the neonatal period with jaundice, hepatomegaly, coagulopathy and cataracts. Older children may present with faltering growth or renal pathology. Galactosaemia is associated with E.coli sepsis.

Investigations
Diagnosis is made by testing urinary reducing substances and a Gal-1-PUT (galactose-1-phosphate uridyltransferase) assay. Liver function tests may be deranged, with prolonged jaundice and possible coagulopathy. Affected children should have an eye examination.

Management
Management of galactosaemia is through a lactose/galactose free diet (soya based formula and then dairy-free diet) and ensuring adequate calcium and Vitamin D intake.

Prognosis
The immediate prognosis is good with early diagnosis and appropriate treatment. Death from liver failure or sepsis is possible if appropriate dietary changes are not made.

Glycogen Storage Disease (GSDs)

This section will mainly focus on GSD type 1, with a general overview of other types.

Aetiology
Glucose is stored as glycogen in the liver and muscles, with specific enzymes involved in glycogenolysis (Figure 2). Individuals affected by GSDs have a defect in one of these enzymes, leading to glycogen build-up (and intermediate compounds), plus difficulty maintaining normoglycaemia. GSDs are categorised according to the enzyme defect involved (Table 3). Type 1 GSD is the most common.

Clinical Features
Some disorders affect the liver, some affect the muscles and some affect both (Table 3). The main role of glycogen in the liver is to maintain glucose homeostasis; therefore, GSDs affecting the liver may lead to hypoglycaemia and hepatomegaly. GSDs affecting the muscles cause weakness and fatigue.

Investigations
Investigations include checking glucose, lactate, uric acid and lipids. Confirmation of the diagnosis is via enzymology assays or genotyping, depending on the subtype. Liver biopsy may be needed in some cases.

Management
For most types of GSD, no specific treatment is available and therefore symptomatic management is important. Hypoglycaemia may occur frequently, particularly during periods of starvation. In the long term, liver transplantation may be necessary.

In GSD 1a, regular feeding during the day is essential, including continuous feeding overnight, with slow release carbohydrates (e.g. uncooked corn starch in those over two) to facilitate longer gaps between feeds. As there is a risk of gout from hyperuricemia, allopurinol should be given. GSD 1b requires the addition of septrin or granulocyte colony-stimulating factor in view of neutrophil dysfunction.

Prognosis
The prognosis for GSD type 1 depends on glucose control. Complications include short stature, renal disease, osteoporosis and liver adenomas (which may become malignant).

Homocystinuria

Aetiology
Homocysteine is an amino acid formed by converting methionine to cysteine. Homocystinuria is a rare inherited metabolic disorder characterised by high concentrations of
CONTENTS

187 The Newborn Examination
 187 Introduction
 187 Neonatal Observations
 187 Physiological Changes at Birth
 187 Head
 189 Eyes
 189 Respiratory and ENT
 189 Ear Abnormalities
 189 Skin
 192 Cardiovascular
 192 Abdomen and Genitalia
 193 Musculoskeletal and Spine
 194 Birth Injuries
195 Neonatal Life Support
196 Prematurity
198 Multiple Births
198 Jaundice
200 Haematological Disorders
 200 Vitamin K Deficiency Bleeding
200 Neonatal Infection
 200 Early-Onset Infection (within 48 hours)
 201 Late-Onset Infection (after 48 hours)
 201 Congenital Infections
202 Respiratory Disorders
 202 Respiratory Distress Syndrome
 202 Broncho-Pulmonary Dysplasia
 (Chronic Lung Disease)
 203 Transient Tachypnoea of the Newborn
 204 Meconium Aspiration Syndrome
 204 Pneumothorax
 204 Pneumonia
 205 Persistent Pulmonary Hypertension of the Newborn
 206 Congenital Pulmonary Airway Malformations
 206 Broncho-Pulmonary Sequestration
206 Neurological Disorders
 206 Neonatal Seizures
 206 Cerebral Infarction
 206 Acute Intrapartum Events and Hypoxic Ischaemic Encephalopathy
 207 Intraventricular Haemorrhage
 209 Periventricular Leukomalacia
209 Hypoglycaemia
209 Additional Pathology
 209 Cleft Palate and Lip
 210 Pierre Robin Sequence
 210 Foetal Alcohol Syndrome
210 Newborn Screening
210 References and Further Reading
although lesions found on the nape of the neck may persist into adulthood.

Port Wine Stain

Port wine stains (also known as naevus flammeus) result from low-flow vascular malformations of the dermal capillaries and post-capillary venules (*Figure 12*). These flat, blanching, pink-red lesions are present from birth. They can be found anywhere on the body, but tend to be unilateral with midline demarcation. These lesions do not regress and may become darker and thicker with age. Complications include thickening, nodularity and bleeding. The majority of these lesions occur as isolated lesions but they may occur as part of a syndrome (e.g. Sturge-Weber syndrome: facial port wine stain, ipsilateral venous malformation in the meninges and ocular abnormalities). Glaucoma is associated with periorcular port wine stains; therefore, neonates with port wine stains in the distribution of the ophthalmic or maxillary branches of the trigeminal nerve should be referred for ophthalmology review. The presence of a facial port wine stain and glaucoma or neurological symptoms should raise suspicion of Sturge-Weber syndrome and a neurological review and brain imaging should be sought. Treatment aims are improvement of the aesthetic appearance and prevention of complications. This may involve repeated treatments with pulsed dye laser therapy.

Benign Pustular Melanosis

This consists of superficial pustules, present at birth, which rupture easily without any actual pus content, leaving a spot of hyperpigmentation (*Figure 13*). Pustules usually last for one or two days, although the hyperpigmentation may persist.

Melanocytic Naevi

Melanocytic naevi represent benign proliferations of a subtype of melanocyte cell known as the naevus cell (*Figure 14*). They can be classified as congenital (occurring from birth) or as acquired. Congenital melanocytic naevi tend to grow rapidly in infancy, starting as flat lesions with even pigment,
RESPIRATORY DISORDERS

Aetiology
Those most likely to be affected are extremely premature neonates. Other risk factors include infection and postnatal lung injury from ventilator support.

X-Ray Appearance
The appearance on X-ray begins with that of RDS (Figure 34), but then can evolve into that of pulmonary interstitial emphysema (Figure 35).

Management
Management involves nutrition optimisation, oxygen supplementation and ventilation support as required. Corticosteroid therapy and/or diuretic therapy may be helpful in improving lung function. Many babies with chronic lung disease will get better as they grow; some go home on oxygen and perhaps remain ventilator-dependent or die subsequently of the disease.

Transient Tachypnoea of the Newborn
This is the most common cause of respiratory distress in term babies, and is due to a delay in clearance of foetal lung fluid.

Aetiology
It is more common following delivery by caesarean section. The exact pathophysiology is unclear, but it is likely due to a lack of exposure of the infant to hormones and stresses involved during labour.

X-Ray Appearance
Radiological features may include cardiomegaly, pleural effusions, fluid in the horizontal fissure and prominent perihilar interstitial markings (Figure 36).
1.16
NEUROLOGY
JOHN JUNGPA PARK, ZESHAN QURESHI
AND DEBASREE DAS

CONTENTS

213 Seizures
 213 Introduction
 214 Febrile Convulsion
 215 Afebrile Seizure
 216 Epilepsy
 218 Status Epilepticus
219 Infections of the Central Nervous System
 219 Meningitis
 222 Encephalitis
 222 Cerebral Abscess
223 Neurodevelopmental Disorders
 223 Cerebral Palsy
226 Headache in Childhood
 226 Migraine
 227 Tension Type Headaches
 227 Cluster Headaches
228 Head Injury in Childhood
 228 Head Injury
 229 Raised Intracranial Pressure
 231 Intracranial Bleeds
231 Neurocutaneous Syndromes
 231 Neurofibromatosis
233 Tuberous Sclerosis Complex
234 Sturge-Weber Syndrome
235 Von Hippel-Lindau Disease
235 Stroke
236 Motor Disorders
 236 Facial Nerve Palsy
 236 Guillain-Barré Syndrome
 236 Spinal Muscular Atrophy
 237 Myasthenia Gravis
237 Muscle Disorders
 237 Duchenne Muscular Dystrophy
 238 Becker's Muscular Dystrophy
 238 Myotonic Dystrophy
 239 Dermatomyositis
239 Embryological Disorders
 239 Neural Tube Defects
 240 Microcephaly
 241 Anecephaly
241 Cerebellar Disorders
 241 Friedreich Ataxia
 241 Ataxia Telangiectasia
241 Hydrocephalus
242 References and Further Reading
Spastic Cerebral Palsy
Spastic cerebral palsy results from upper motor neurone injury and thus manifests with classic signs of upper motor neuron injury, including:
- Muscle weakness (particularly antigravity muscles e.g. dorsiflexion of the feet).
- Increased muscle tone.
- Brisk tendon reflex.
- Sustained clonus.

Depending on the location of the insult different parts of the body are affected. Three subtypes of spastic CP are recognised: spastic hemiplegia, spastic diplegia and spastic quadriplegia (Table 7).

Extrapyramidal Cerebral Palsy
Extrapyramidal cerebral palsy (also known as athetoid, choreoathetoid or dyskinetic cerebral palsy) arises in response to damage to the extrapyramidal tracts in the brain (particularly the basal ganglia). Therefore, upper motor neurone signs are absent (Figure 4). Causes include hypoxic-ischaemic injury during delivery and kernicterus.

Infants are initially hypotonic, with poor head control, but show increased tone and dyskinetic movements as they develop. Dyskinetic movements include:
- Dystonia. A broad term describing involuntary, sustained contractions of opposing muscle groups. This leads to abnormal posture, twisting movements and repetitive movements.
- Athetosis. Slow, involuntary, writhing movements.
- Chorea. Brief, irregular movements that are non-repetitive/rhythmic. They appear to flow smoothly, giving them the appearance of dance-like movements.

<table>
<thead>
<tr>
<th>TABLE 7: 3 Subtypes of Spastic Cerebral Palsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected body parts</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>The arm and leg on one side, with arms affected more, and sparing of the face. Spasticity greatest in antigravity muscles.</td>
</tr>
<tr>
<td>Lower limbs (with some involvement of upper limbs). Referred to as paraplegia if no involvement of upper limbs.</td>
</tr>
</tbody>
</table>
REFERENCES AND FURTHER READING

Seizures/Epilepsy

Intracranial Infections
Breastfeeding
Breastfeeding has many advantages and breast milk is considered the ideal food for infants (Table 1). The World Health Organization (WHO) has recommended exclusive breastfeeding (i.e. no other fluids or solids) until an infant is 6–months-old. Breastfeeding is encouraged until the baby is at least 12-months-old, as long as both the mother and child desire it. Box 1 lists some contraindications.

Jaundice and Breastfeeding
Breastfed babies are more likely to become jaundiced in the neonatal period. This may be for two reasons:
• If breastfeeding is slow to establish, a baby may lose significant weight in the first week of life. Dehydration due to insufficient intake exacerbates jaundice.
• Breast milk innately inhibits certain liver enzymes involved in bilirubin excretion (glucuronyl transferase), making jaundice more prominent.

TABLE 1: Benefits of breastfeeding

<table>
<thead>
<tr>
<th>For infants</th>
<th>For mothers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Provides the right composition of nutrients for healthy growth and development.</td>
<td>• Stimulates release of oxytocin that helps with uterine contraction and reduces postpartum haemorrhage.</td>
</tr>
<tr>
<td>• Readily absorbed by the body.</td>
<td>• Facilitates postpartum weight loss.</td>
</tr>
<tr>
<td>• Not complicated by infections associated with formula milk preparation.</td>
<td>• Contraceptive effect through prolongation of lactational amenorrhoea (if used exclusively).</td>
</tr>
<tr>
<td>• Contains antibodies.</td>
<td>• Lowers the risk of breast cancer, ovarian cancer and osteoporosis.</td>
</tr>
<tr>
<td>• Numerous long-term health benefits; including improved visual acuity and cognitive development, and reduced risk of developing allergies, inflammatory bowel disease, cardiovascular diseases, diabetes and obesity.</td>
<td>• Saves the time and expenses associated with preparation of formula milk.</td>
</tr>
<tr>
<td>• Provides opportunity for infant-mother bonding.</td>
<td>•</td>
</tr>
</tbody>
</table>

1.18
ONCOLOGY
ANNA CAPSOMIDIS AND AMY MITCHELL

PRINCIPLES OF ONCOLOGICAL CARE

Presentation
Leukaemia, lymphoma and brain tumours are the most common cancers affecting children. As childhood malignancy is rare, there can be a delay in diagnosis after presenting symptoms first emerge. Timely diagnosis and specialist referral can improve outcome.

Children referred to paediatric oncology centres for suspected cancer require many investigations to make a histological diagnosis and to assess for metastatic spread before treatment starts.

Management of childhood malignancy depends on:
- Cancer type.
- Metastasis.
- Child’s age.
- Co-morbidities.

Whilst the mainstay of treatment for haematological malignancies is chemotherapy, treatment of solid tumours usually requires a combination of chemotherapy, surgery and radiotherapy.

History
- Persistent unexplained fever, lethargy or weight loss: after excluding common infections (such as upper respiratory tract infection [URTI], urinary tract infection [UTI] or pneumonia), consider malignancy, atypical infections, inflammatory bowel disease (IBD), and human immunodeficiency virus (HIV).
- Unexplained bleeding from mouth, gums or nose.
- Unexplained bruises.
- Persistent bone pain or back pain (including nocturnal, which may wake the child from sleep).
- New onset limp, or a child who has stopped weight bearing.
- New lump or mass.
- Headaches for more than two weeks severe enough to wake the child from sleep in the morning, or associated nausea and vomiting.
- Shortness of breath (especially when associated with suspicious lymphadenopathy).
- Unexplained new onset seizures.
- Persistent, unexplained vomiting.
- Parental anxiety with no clear diagnosis.
- Behavioral change.
- Visual loss, new onset squint (can be paralytic e.g. due to a 6th nerve palsy, or non-paralytic e.g. brainstem lesion).
- Rapid head growth in under 2-year-olds.
can be delivered in the child’s own home, in hospital, or in a children’s hospice. Traditionally, children were referred to the paediatric palliative care team when their disease was no longer curable. However, more recently a “parallel planning” approach has become more popular. The aim of this approach is for much earlier involvement and collaborative working to enable appropriate symptomatic management alongside curative treatment.

Making end-of-life decisions is extremely challenging for children, their families and the healthcare professionals involved. Communication is essential to respect the best interests of the child. Children and young people should be involved in end-of-life discussions as much as possible, unless this is deemed harmful to the child.

COMMON MALIGNANCIES

Leukaemia

Leukaemia is the most common childhood cancer, with approximately 400 new cases in the UK each year.

Aetiology

Leukaemia is a haematological malignancy caused by abnormal cellular division of immature blood cells (lymphoblasts or myeloblasts) in the bone marrow. Clinical presentation reflects the infiltration of leukaemic cells into normal tissues including the bone marrow, lymph nodes, liver, spleen, brain and testes:

- Bone marrow failure leads to anaemia (pallor), thrombocytopenia (bleeding, bruising and petechiae) and neutropenia (infections).
- Tissue infiltration leads to features such as bone pain, hepatosplenomegaly and lymphadenopathy.

Leukaemia is classified into acute or chronic, as well as into myeloid or lymphoid, according to the cell of origin (*Figure 4*). Various genetic and inherited factors have been shown to play a role in the development of leukaemia (*Box 1*).

Siblings of those affected also have a higher risk of developing the disease. Approximately 80% of childhood leukaemias are acute lymphoblastic leukaemias (ALL) and 15% acute myeloid leukaemias (AML). Key differences between ALL and AML are summarised in *Table 2*, but they generally present with similar symptoms. Chronic lymphocytic leukaemia (CLL) and chronic myeloid leukaemia (CML), although common in adults, are extremely rare in children.

Clinical Features

Children with ALL usually present with a short history over days or weeks, whereas the symptoms and signs of AML may develop more slowly. Initially, symptoms may appear very non-specific and mimic a viral infection.

Common presenting symptoms and signs include:

- Fever.
- Pallor.
- Petechiae and bruising.
- Tiredness or lethargy.

TABLE 2: Acute lymphoblastic leukaemia vs. Acute myeloid leukaemia

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>AML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell line affected</td>
<td>Lymphoid</td>
<td>Myeloid</td>
</tr>
<tr>
<td>Percentage of leukaemia in children</td>
<td>80%</td>
<td>15%</td>
</tr>
<tr>
<td>Peak age incidence</td>
<td>2 to 3-years-old</td>
<td>Under 2-years-old</td>
</tr>
<tr>
<td>Sex predominance</td>
<td>Boys > Girls</td>
<td>Boys = Girls</td>
</tr>
<tr>
<td>Auer rods</td>
<td>Auer rods not present</td>
<td>Auer rods usually present</td>
</tr>
<tr>
<td>Prognosis (children <14-years-old)</td>
<td>Approximately 90% five-year survival rate</td>
<td>Approximately 60-70% five-year survival rate</td>
</tr>
</tbody>
</table>
Orthopaedic and Rheumatological Disorders

Anand Goomany and Alexander Young

Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>Paediatric Bone Anatomy</td>
</tr>
<tr>
<td></td>
<td>Fracture Patterns in Children</td>
</tr>
<tr>
<td></td>
<td>Physeal Fractures</td>
</tr>
<tr>
<td></td>
<td>Supracondylar Fractures</td>
</tr>
<tr>
<td></td>
<td>Clavicle Fracture</td>
</tr>
<tr>
<td></td>
<td>Toddler's Fracture</td>
</tr>
<tr>
<td></td>
<td>Pathological Fracture</td>
</tr>
<tr>
<td>274</td>
<td>Orthopaedic Hip Disorders</td>
</tr>
<tr>
<td></td>
<td>Developmental Dysplasia of the Hip</td>
</tr>
<tr>
<td></td>
<td>Slipped Upper Femoral Epiphysis</td>
</tr>
<tr>
<td></td>
<td>Perthes Disease</td>
</tr>
<tr>
<td>278</td>
<td>Bone and Joint Infections</td>
</tr>
<tr>
<td></td>
<td>Septic Arthritis</td>
</tr>
<tr>
<td></td>
<td>Osteomyelitis</td>
</tr>
<tr>
<td>281</td>
<td>Rheumatological Disorders</td>
</tr>
<tr>
<td></td>
<td>Transient synovitis</td>
</tr>
<tr>
<td></td>
<td>Reactive Arthritis</td>
</tr>
<tr>
<td></td>
<td>Juvenile Idiopathic Arthritis</td>
</tr>
<tr>
<td>283</td>
<td>Ankylosing Spondylitis</td>
</tr>
<tr>
<td>284</td>
<td>Systemic Lupus Erythematosus</td>
</tr>
<tr>
<td>285</td>
<td>Dermatomyositis</td>
</tr>
<tr>
<td>286</td>
<td>Skeletal Disorders</td>
</tr>
<tr>
<td></td>
<td>Marfan Syndrome</td>
</tr>
<tr>
<td>288</td>
<td>Additional Pathologies</td>
</tr>
<tr>
<td></td>
<td>Torticollis</td>
</tr>
<tr>
<td></td>
<td>Osgood-Schlatter Disease</td>
</tr>
<tr>
<td></td>
<td>Chondromalacia Patellae</td>
</tr>
<tr>
<td></td>
<td>Osteochondritis Dissecans</td>
</tr>
<tr>
<td></td>
<td>genu varum</td>
</tr>
<tr>
<td></td>
<td>genu valgum</td>
</tr>
<tr>
<td>290</td>
<td>References and Further Reading</td>
</tr>
</tbody>
</table>
Displaced fractures. Urgent reduction is required. Closed reduction techniques followed by splinting can be used for type I and II fractures. Type III and IV fractures may be amenable to closed reduction but will require open reduction and internal fixation if accurate reduction is not achieved.

Prognosis
These fractures must be carefully reduced to minimise the risk of premature ossification of the affected part, causing serious growth arrest and deformity. Salter-Harris type I and II fractures rarely result in growth arrest or deformity, in contrast to types III-V where the risk of growth arrest is far greater.

Supracondylar Fractures
Ossification centres are present in children. These are the sites of new bone formation. The presence of six ossification centres around the elbow can make interpreting a child’s X-ray difficult (Figure 6). These ossification centres appear in a fairly constant order and can be remembered by the acronym CRITOE:

- Capitellum - age 1.
- Radial head - age 3.
- Internal epicondyle - age 5.
- Trochlea - age 7.
- Olecranon - age 9.
- External epicondyle - age 11.

Knowing the order of ossification is helpful. The most important reason is that the site of an ossification centre may be mistaken for a fracture. An example is shown in Figure 7.

Clinical Features
Supracondylar fractures are common fractures in children. Classic features include:

- Arm extension injuries.
- They commonly occur following a fall onto an outstretched hand.
- Tenderness and swelling over the elbow.

There is an associated forearm injury in 10%, and compartment syndrome may ensue. There is also a risk of injury to the brachial artery and the radial, ulnar and median nerves.

Management
Management may be conservative, using plaster immobilisation, or surgical, depending upon the degree of displacement and associated neurovascular injury.

Clavicle Fracture
This is the most common paediatric bone to be fractured (Figure 8).
Differential Diagnosis

- **Transient synovitis.** This is a self-limiting condition in an otherwise well child.
- **Juvenile idiopathic arthritis.** This commonly affects more than one joint with extra-articular features.
- **Septic arthritis/Proximal femoral osteomyelitis.** Elevated inflammatory markers.
- **Proximal femoral fracture.** This follows significant trauma.
- **Acute or chronic slipped upper femoral epiphysis.** This is more likely in older, overweight children.

Management

The aims of treatment are to relieve the symptoms, improve mobility, reduce mechanical stress and to contain the femoral head in the acetabulum until it reforms (containment).

Surgical Management

Surgical treatment may be required if there is severe disease, the patient is older than six, or when conservative management fails. If immobilisation in plaster cast is indicated, the majority of orthopaedic surgeons would recommend surgical management since immobilisation is heavily restrictive.

Options include a varus osteotomy of the femur or innominate osteotomy of the pelvis. Both approaches aim to increase the containment of the femoral head in the acetabulum. A total hip replacement at skeletal maturity can be performed for patients with severe functional impairment.

Complications

- Joint stiffness.
- Limb length discrepancy.
- Coxa magna. Broadening of the head and neck of the femur.
- Osteoarthritis. This is secondary to abnormal weight bearing.
- Premature fusion of the growth plates leading to overgrowth of the trochanter.
- Hinged abduction.

Prognosis

In patients less than 6-years-old, the outcome is good, irrespective of treatment. Children more than 6-years-old with severe Perthes disease have significantly better outcomes with surgical treatment than those with conservative treatment. However, half of all patients require joint arthroplasty after a median of 50 years.

Indices for poor prognosis include:

- Girls (earlier skeletal maturity).
- Onset beyond the age of 6–years-old (lower remodelling potential).
- >50% involvement of the femoral head.
- Lateral displacement of the femoral head impinging on the acetabular margin.
- Subluxation.

BONE AND JOINT INFECTIONS

Septic Arthritis

Septic arthritis is a serious infection of the joint space and an important cause of joint swelling in children. The most commonly affected joint in the paediatric population is the hip joint, although almost any joint can be affected. Monoarticular septic arthritis is classical, although infants may present with multiple joint involvement. Prompt diagnosis and treatment of septic arthritis is paramount to prevent rapid destruction of the articular cartilage and joint space.

Aetiology

Infection can spread to the joint in three ways:

1. Direct invasion from an adjacent focus of infection, e.g. acute osteomyelitis.
INTRODUCTION

Calculations for worldwide childhood morbidity and mortality are integral to healthcare planning and political direction. A 2013 article in the *Lancet* reported that 6.3 million children were estimated to die before the age of five, with 51.8% dying of infectious causes and 44% dying in the neonatal period. When compared to mortality rates in 2000, advances in treating pneumonia, diarrhoea and measles were collectively responsible for a reduction of approximately 1.8 million deaths. Projected estimates from this data predict 4.4 million children dying under five years in 2030. Part of the global health agenda is to identify and reduce preventable deaths.

Today, mortality is falling, but morbidity is increasing. For example, of the estimated 1.15 million babies with neonatal encephalopathy in 2010, 287,000 died, but a further 412,000 were estimated to survive with neurological impairment. With the provision of modern medicine and suitable intensive care, more babies are surviving, but the resultant medical complications continue throughout their childhood and into adulthood. These complications can reduce quality of life, and even if well managed, represent a major financial cost. More generally, children who would have died from acute infections or due to complications of a medical condition are surviving longer with chronic health concerns.

A summary of key causes of mortality, and morbidity are shown in Table 1-2.

The cost of providing healthcare worldwide is increasing. Ill health and disease have financial, social and potentially health implications that go beyond the single patient who seeks medical attention. Through public health, it is possible to reduce these burdens of healthcare and better manage the finite resources of individual regions, countries and the world as a whole. Forward planning, health promotion and service provision must evolve to meet the growing and ever changing demands of our diverse populations.

As we entered the new millennium, it was recognised that a common framework was needed to provide measurable improvements in health and wellbeing across the developing world. In September 2000, world leaders signed up to the United Nations Millennium Development Goals (MDGs). These were goals designed to focus efforts on a national and international level until 2015. Both progress and solutions...
CLINICAL MANIFESTATIONS OF RENAL DISEASE

Acute Kidney Injury

Acute Kidney Injury (AKI) can be defined as a sudden decrease in renal function; elevated urea is followed by an elevated creatinine and a resulting decreasing glomerular filtration rate (GFR). There are often associated difficulties in fluid and electrolyte regulation as well as with blood pressure control.

There are numerous definitions for AKI, but one which is widely used is the paediatric RIFLE (pRIFLE) which uses change in creatinine clearance and/or urine output for the definition (Table 1). Note that creatinine clearance is an approximation for the GFR, but is an overestimate (as creatinine is both filtered by the glomerulus, and secreted by the proximal tubule).

Aetiology

The causes of acute kidney injury can be pre-renal, renal or post-renal and are summarised in Table 2.

Clinical Features

Acute kidney injury can present nonspecifically, particularly in neonates with symptoms such as unexplained crying, restlessness, lethargy, vomiting, or poor feeding. Other features may include reduced urine output and pallor. Most commonly acute kidney injury is related to sepsis or hypovolaemia, in which signs of the cause would be apparent.

<table>
<thead>
<tr>
<th>TABLE 1: Acute Kidney Injury definitions (pRIFLE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Kidney Injury</td>
</tr>
<tr>
<td>Risk.</td>
</tr>
<tr>
<td>Injury.</td>
</tr>
<tr>
<td>Failure.</td>
</tr>
<tr>
<td>Loss of function.</td>
</tr>
<tr>
<td>End stage.</td>
</tr>
</tbody>
</table>
Hypoalbuminaemia (<25g/L).

Oedema. May be a later sign or may not be present.

It is also usually associated with hyperlipidaemia.

Aetiology

Eighty percent of cases in children are due to minimal change disease (Figure 1), which has normal light microscopy appearance, but a typical electron microscopy appearance with podocyte foot process effacement. Children usually present between 2 and 6-years-old. Rarely, children under 12-months-old can present with infantile nephrotic syndrome, or over 10-years-old with congenital nephrotic syndrome. These have a poorer prognosis.

Other less common causes are as follows:

- **Focal and segmental glomerulosclerosis.** Scarring in scattered regions of the kidney is seen on histopathology. "Focal" means that only some of the glomeruli become scarred. "Segmental" means damage affects only part of an individual glomerulus.

- **Membranous nephropathy.** There is thickening of blood vessels in the glomeruli resulting in proteinuria and nephrotic syndrome.

- **Membranoproliferative glomerulonephritis.** This is a group of disorders. Some of them involve deposition of antibodies in the glomeruli, causing thickening and damage, which usually has a nephritic picture.

Risk factors include:

- Asian ethnicity.
- Male gender.
- Previous infections. Upper respiratory tract infections (URTIs) or hepatitis.
- Medications. e.g. NSAIDs (nonsteroidal anti-inflammatory drugs).
- Systemic lupus erythematosus.
- Diabetes mellitus.
- Human immunodeficiency virus.
- Family history of nephrotic syndrome.
- Previous nephrotic syndrome.

Clinical Features

Symptoms vary depending on the underlying aetiology and the severity of the condition. It may simply present with mild oedema. Periorbital oedema is often the earliest sign (Figure 2) and may be initially misdiagnosed as an allergic reaction.

Other possible symptoms include:

- Discomfort relating to swelling or skin breakdown.
- Weight gain.
- Abdominal distension.
- Tiredness.
- Foamy urine.
- Increased infections. This is particularly from encapsulated organisms like pneumococcal or *Haemophilus* infection.
- Poor growth and development.

FIGURE 1

Normal

Endothelial cell

Epithelial cell

Red blood cells

Glomerular lumen

Protein

Epithelial foot process

Mesangial cell

Basement membrane

Minimal change disease

Foot process fusion and effacement

Increased protein leakage

Blood from renal artery

Blood to renal vein

Filtration

To urine

Blood from renal artery

Blood to renal vein

Filtration

To urine

Minimal change disease.
Respiratory Disorders

Asthma

Asthma is a clinical diagnosis characterised by reversible airflow limitation.

Aetiology

Three main features give rise to the asthmatic phenotype:

- **Airway hyperresponsiveness.** This is an exaggerated bronchial smooth muscle contraction to a wide range of stimuli. The triggers vary according to the individual, but may include cold air, house dust mites or smoke.
- **Bronchial inflammation.** There is widespread inflammation in the bronchioles, with infiltration by eosinophils, T lymphocytes and mast cells. This is associated with oedema, smooth muscle hypertrophy, mucus plugging and epithelial damage. Some of these changes may be chronic but they are more pronounced during an asthma exacerbation.
- **Airflow limitation.** This is usually reversible, either spontaneously or with treatment, but there may be some underlying chronic changes.

Asthma is generally characterised by classical helper T cell type 2 (Th2) pathology with increased cytokines such as interleukin 4, 5 and 13 (IL-4, IL-5 and IL-13), which are thought to drive symptoms. The pathology of asthma is characterised by goblet cell hyperplasia and infiltration of inflammatory cells such as CD4+ T cells, eosinophils and mast cells.

Clinical Features

As with most conditions, a clear clinical history is often all that is needed, particularly with young children. Symptoms are induced by weather changes, ill health and exercise. Nocturnal symptoms and improvement on bronchodilation are even more suggestive of the disease.

- **Wheeze.** Classically, in asthma, the wheeze is an expiratory airflow sound resulting from narrowed and inflamed airways. It can be heard at the bedside or require auscultation. However, the volume of the sound can be misleading. A
The skin is the largest organ in the body. Its key functions include:

- **Barrier function.** It prevents entry of water and electrolytes into the body through the surface.
- **Immunosurveillance.** Langerhans cells act as antigen-presenting cells. Macrophages and lymphocytes defend against microorganisms that breach its protective barrier.
- **UV protection.** Melanocytes contain the pigment melanin, which filters UV radiation from sunlight.
- **Thermoregulation.** This is orchestrated by sweat glands and blood vessels of the dermis, in addition to the insulating properties of the subcutaneous layer.
- **Sensory function.** Nerve endings detect touch, pain and temperature.
- **Vitamin D synthesis.** Vitamin D is converted into its active form in the basal and spinous layers of the epidermis under the influence of ultraviolet light from sunlight.
- **Respiration.** The skin accounts for up to 2% of respiration by absorbing oxygen and eliminating carbon dioxide.

There are three layers to the skin: the epidermis, dermis and the subcutaneous layer (Figure 1).

Epidermis
This is the thin, uppermost layer acting as a waterproof physical barrier. It is the first line of defence against the environment. The epidermis is immensely complex. It has four main layers: stratum basale, stratum spinosum, stratum granulosum and stratum corneum. Another layer, the stratum lucidum, is found on the palms and soles. The main cells of the epidermis are the keratinocytes. Other important cells are melanocytes (dendritic cells in the basal layer, containing melanin pigment) and Langerhans cells (dendritic antigen-presenting cells forming part of the immune surveillance system of the skin). The dermo-epidermal junction (DEJ) is the region that lies between the epidermis and the dermis holding it together. It is immunologically and genetically important; antibodies against various components of the DEJ are found in genetic and acquired skin conditions such as blistering diseases.
and intertriginous areas. Lesions seen in the neck folds and axillae tend to be confluent, erythematous and greasy, but non-scaling. Seborrhoeic dermatitis may also manifest as “cradle cap”, which favours the vertex and frontal areas of the scalp, in a “cap like” distribution (Figure 4). Pruritus, if experienced, tends to be mild. Infants generally thrive, with normal feeding and sleep.

Management
Parents should be offered reassurance and educated about simple skin care measures; the application of emollients, frequent shampooing and removal of scales with gentle brushing.

Prognosis
Most cases spontaneously resolve within a few weeks to months. Cases persisting for greater than 12 months may need further evaluation.

Psoriasis

Aetiology
Psoriasis is a common skin disorder affecting two percent of the population. The pathophysiology is not fully understood; an altered immune response and polygenic inheritance are thought to play vital roles. Although psoriasis can occur at any age, it is relatively uncommon in children, with only 10% of cases presenting before 10-years-old.

Clinical Features
Psoriasis is characterised by intensely erythematous, well-demarcated, symmetrical plaques with adherent silvery scales. Common sites are the elbows, knees, lumbar region, ears, scalp and hairline (Figure 5). Psoriasis in children can present on the face. Guttate psoriasis is a form of psoriasis triggered by a throat or skin streptococcal infection. It presents suddenly, with widespread small plaques measuring up to 1 cm on the trunk and extremities.

Management
Management varies depending on disease severity and can include:

- Emollients.
- Vitamin D analogues.
- Tar preparations.
- Corticosteroids.
- Dithranol.

Second-line treatments include:

- Phototherapy.
- Systemic agents, such as retinoids, methotrexate or acitretin (in a minority of children).
- Biologic treatment with etanercept is now licensed for use in severe, refractory childhood psoriasis.

Complications
Associations include psoriatic arthritis in up to 48% of patients. This can affect the large or small joints but has a tendency to involve the distal small joints and may present with dactylitis. Additionally, nail changes such as pitting or onycholysis.
1.24
SURGERY
MAY BISHARAT

CONTENTS

343 General Surgery
343 Infantile Pyloric Stenosis
344 Acute Appendicitis
345 Intussusception
346 Inguinal Hernia
348 Hydrocele
348 Umbilical Hernia
348 Divarication of Recti

348 Urology
348 Undescended Testes
349 Phimosis
350 Paraphimosis
350 Balanitis Xerotica Obliterans
350 Hypospadias
352 Pelvi-Ureteric Junction Obstruction
352 Vesico-Ureteric Junction Obstruction
352 Vesico-Ureteric Reflux
354 Posterior Urethral Valves

354 Neonatal Surgery
354 Necrotising Enterocolitis
356 Congenital Diaphragmatic Hernia
357 Tracheo-Oesophageal Fistula/Oesophageal Atresia
358 Anorectal Malformation
359 Gastrochisis
360 Exomphalos
361 Duodenal Obstruction
362 Ileal and Jejunal Atresias
363 Meconium ileus
364 Malrotation with Midgut Volvulus
365 Hirschsprung Disease
367 Biliary Atresia
368 Choledochal Cysts

368 References and Further Reading
examined between bouts of pain, a sausage-shaped mass can frequently be felt in the right upper quadrant. Occasionally children have an extremely distended abdomen or can have frank peritonitis (rigid abdomen) and sepsis.

Investigations

Blood tests may point towards inflammation, electrolyte derangement, dehydration and significant bleeding. However, the gold standard investigation is an ultrasound scan of the abdomen. The classic sign is the "target sign" (or doughnut sign) on transverse section, which represents the two concentric lumina of bowel (Figure 3). An abdominal X-ray may reveal features of small bowel obstruction.

Management

Non-Operative Management

Appropriate fluid resuscitation should occur prior to any intervention as children with intussusception will have suffered huge third space losses of fluid. IV antibiotics (broad spectrum, like co-amoxiclav) should be administered promptly.

Following adequate resuscitation, a pneumatic reduction enema is performed:

- A catheter is inserted into the rectum of the child in the radiology department and air is insufflated under fluoroscopic screening.
- The pressure generated by the air, in 75-80% of cases, is sufficient to achieve a complete reduction (Figure 4).

Patients who fail air enema, have a highly distended abdomen, or who are peritonitic will require an urgent laparotomy.

Operative Management

A right transverse incision is made and the intussusception is identified. In 50-60% of cases, a simple manual reduction is possible. In the remainder of cases, the bowel is either too oedematous to allow a successful reduction or has become non-viable. In such cases, a resection of the affected bowel with end-to-end anastomosis is performed.

Following a successful air reduction enema, fluids can be reintroduced after 12-24 hours and patients are discharged 48 hours later. Patients who undergo an open manual reduction have a similar post-operative course, whereas children who undergo bowel resection have a slightly longer recovery period.

Complications

If left untreated, intussusception can lead to:

- Ischaemia.
- Necrosis.
- Haemorrhage.
- Perforation.
- Infection/peritonitis.

Complications can also be iatrogenic, with one percent of air reduction enemas leading to perforation.

Prognosis

Mortality is approximately one percent and is mainly related to inadequate fluid resuscitation or diagnostic delay. Recurrence occurs in 10% of cases. Approximately 30% occur in the first 24 hours post reduction and 70% present within six months.

In children with more than one recurrence, investigations for a pathological lead point need to be performed.

Inguinal Hernia

An inguinal hernia is the protrusion of peritoneal cavity contents through the inguinal canal. The incidence of inguinal hernias is approximately one to two percent, but is much higher in pre-term infants (up to 20%). The male to female ratio is four to one. The condition is more common on the right, although 10% of cases are bilateral.
TABLE 6: Aetiology of vesico-ureteric reflux

<table>
<thead>
<tr>
<th>Primary VUR</th>
<th>Secondary VUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormally situated ureteric orifice.</td>
<td>Obstructive: posterior urethral valves, meatal stenosis.</td>
</tr>
<tr>
<td>Short submucosal tunnel.</td>
<td>Dysfunctional bladder.</td>
</tr>
</tbody>
</table>

Progressive renal scarring leads to loss of function. This, in turn, leads to renal failure and hypertension. Up to 15% of all cases of VUR develop end-stage renal failure.

The grades of VUR reflux are summarised in Figure 8. Grade I and II resolve relatively quickly, but the higher the grade, the greater the chance of renal scarring.

Clinical Features
VUR can be picked up:
- Most commonly, during the investigations arising after a UTI (p304).
- As part of the work up for antenatal hydronephrosis.
- Incidental findings (e.g. the finding of a scarred atrophic kidney on ultrasound for other reasons).
- Patients present with hypertension and/or end stage renal disease (rarely).

Investigations
MCUG is the gold standard for diagnosing reflux. Contrast is injected into the bladder, and images are taken during micturition (bladder contraction). Any reflux can subsequently be seen. DMSA (dimercaptosuccinic acid) scanning is a nuclear medicine imaging modality that is very useful for the detection of any renal scarring. Hydronephrosis (distension and dilatation of the renal pelvis and calyces) can be seen on ultrasound (Figure 9).

Management

Medical
The aim is to treat ongoing UTIs and prevent any further episodes. Medical treatment options for VUR include:
- Prophylactic antibiotics.
- Laxatives (to treat any associated constipation).

FIGURE 8
Grading of VUR by the International Reflux Study Committee (1981).
Neonatal Surgery

Management

If the condition was diagnosed on antenatal scans, delivery should be planned at a centre that provides neonatal intensive care and paediatric surgery. Neonatal resuscitation involves insertion of a NG tube (to prevent distension of the stomach) and intubation/ventilation.

Surgical repair of the diaphragmatic defect is only performed once the infant is in a stable condition. The procedure begins with a subcostal incision and the defect is then repaired using remnants of muscle (primary repair) or prosthetic material (patch repair). Both laparoscopic and thoracoscopic CDH repairs are now performed.

In recent years, foetal surgery has undergone some trials but it is not yet widely adopted. Inserting a balloon into the foetal trachea to promote lung expansion is currently reserved for cases with poor outcome indicators.

Complications

Patients who are well enough to undergo CDH repair show some long-term sequelae:

- Respiratory insufficiency secondary to the pulmonary hypoplasia.
- Neurological and developmental issues secondary to hypoxia in the newborn period.
- Gastro-oesophageal reflux disease. This might be so severe that medical anti-reflux treatment is insufficient and a fundoplication is required.
- Chest wall and spine deformity. Some require surgical correction.
- Recurrence of the diaphragmatic hernia. This is more common following use of a synthetic patch.

Prognosis

Despite advances in antenatal and neonatal care, the mortality of the condition remains approximately 60%. The major determinant of survival is pulmonary hypoplasia, while presence of associated cardiac defects increases mortality to over 90%. Antenatal diagnosis gives a worse prognosis, as it is associated with a significantly greater lung hypoplasia.

Tracheo-Oesophageal Fistula/Oesophageal Atresia (TOF/OA)

In most instances, oesophageal atresia and tracheo-oesophageal fistulae occur together. The incidence of this condition is around one in 4000 live births.

In oesophageal atresia (OA), a portion of the mid-oesophagus is missing. The gap between the two remaining ends can be short (more common) or long (less frequent).

A tracheo-oesophageal fistula (TOF), by contrast, is a communication between the oesophagus and the trachea. This can occur as an isolated defect (an H-type fistula), but is very rare. The most common variant is a blind ending upper pouch of oesophagus, with the lower oesophagus connecting to the trachea; this is called a “distal” pouch fistula. This variant accounts for more than 85% of TOF/OA cases (Figure 12).

Tracheo-Oesophageal Fistula/Oesophageal Atresia (TOF/OA)

In most instances, oesophageal atresia and tracheo-oesophageal fistulae occur together. The incidence of this condition is around one in 4000 live births.

In oesophageal atresia (OA), a portion of the mid-oesophagus is missing. The gap between the two remaining ends can be short (more common) or long (less frequent).

A tracheo-oesophageal fistula (TOF), by contrast, is a communication between the oesophagus and the trachea. This can occur as an isolated defect (an H-type fistula), but is very rare. The most common variant is a blind ending upper pouch of oesophagus, with the lower oesophagus connecting to the trachea; this is called a “distal” pouch fistula. This variant accounts for more than 85% of TOF/OA cases (Figure 12).

Type 1

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>8%</td>
<td>2%</td>
<td>85%</td>
<td><1%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Classification of TOF/OA.
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>373</td>
<td>Case 1</td>
<td>A 14-year-old girl presenting with self-harm</td>
</tr>
<tr>
<td>373</td>
<td>Case 2</td>
<td>A 3-year-old boy presenting with stridor</td>
</tr>
<tr>
<td>374</td>
<td>Case 3</td>
<td>A 14-year-old boy presenting with a limp</td>
</tr>
<tr>
<td>374</td>
<td>Case 4</td>
<td>A 10-month-old presenting with fever</td>
</tr>
<tr>
<td>375</td>
<td>Case 5</td>
<td>A 20-day-old boy presenting with fever, vomiting, and lethargy</td>
</tr>
<tr>
<td>375</td>
<td>Case 6</td>
<td>An 11-year-old boy presenting with chronic abdominal pain</td>
</tr>
<tr>
<td>375</td>
<td>Case 7</td>
<td>An 8-year-old child presenting with persistent chest infections</td>
</tr>
<tr>
<td>376</td>
<td>Case 8</td>
<td>A 5-year-old boy with unstable asthma</td>
</tr>
<tr>
<td>376</td>
<td>Case 9</td>
<td>A 6-year-old girl presenting with wheeze and breathlessness</td>
</tr>
<tr>
<td>377</td>
<td>Case 10</td>
<td>A 7-year-old boy presenting with fever and a cough</td>
</tr>
<tr>
<td>377</td>
<td>Case 11</td>
<td>An 8-month-old baby presenting with respiratory distress and poor feeding</td>
</tr>
<tr>
<td>377</td>
<td>Case 12</td>
<td>A 6-year-old girl presenting with a possible allergic reaction</td>
</tr>
<tr>
<td>377</td>
<td>Case 13</td>
<td>A 5-year-old girl presenting with burns</td>
</tr>
<tr>
<td>378</td>
<td>Case 14</td>
<td>A 1-hour-old baby presenting with suspected sepsis</td>
</tr>
<tr>
<td>378</td>
<td>Case 15</td>
<td>A 6-year-old boy presenting with an infective asthma exacerbation</td>
</tr>
<tr>
<td>378</td>
<td>Case 16</td>
<td>A 12-year-old girl presenting with abdominal pain</td>
</tr>
<tr>
<td>381</td>
<td>Case 17</td>
<td>A 1-minute-old baby requiring resuscitation</td>
</tr>
<tr>
<td>381</td>
<td>Case 18</td>
<td>An 18-hour-old baby presenting with jaundice</td>
</tr>
<tr>
<td>381</td>
<td>Case 19</td>
<td>A 6-hour-old baby presenting with difficulty in breathing</td>
</tr>
<tr>
<td>382</td>
<td>Case 20</td>
<td>A 1-day-old baby with an abnormal newborn baby examination</td>
</tr>
<tr>
<td>382</td>
<td>Case 21</td>
<td>A 24-month-old presenting with developmental delay</td>
</tr>
<tr>
<td>383</td>
<td>Case 22</td>
<td>An 8-year-old boy presenting with behavioural problems</td>
</tr>
<tr>
<td>383</td>
<td>Case 23</td>
<td>An 8-month-old presenting with a fall</td>
</tr>
<tr>
<td>383</td>
<td>Case 24</td>
<td>An 18-month-old presenting with a seizure</td>
</tr>
<tr>
<td>384</td>
<td>Case 25</td>
<td>A 7-year-old presenting with fever</td>
</tr>
<tr>
<td>384</td>
<td>Case 26</td>
<td>A 15-year-old presenting with recurrent headaches</td>
</tr>
</tbody>
</table>
CASE 1
A 14-year-old girl presenting with self-harm

Jennifer, a 14-year-old girl, is brought in by her mum after having self-harmed by cutting her arm with a razor. On assessment, the cuts are shallow and horizontal, with no active bleeding. The girl is quiet and withdrawn, but appears otherwise well. This is her first episode of self-harm. When asked whether she wanted to kill herself, she shrugs. Observations are within normal limits. After being reassured that her cuts do not require further treatment, both Jennifer and her mother are keen to go home.

Questions
Q1 Which of the following would be the best way to manage Jennifer?
A Jennifer should be sectioned because she is suicidal
B She should be discharged home in her mother's care, because she is a child
C She should be assessed before discharge by the child and adolescent mental health team, either in the ED or as an inpatient
D She should be discharged on her own because she has been assessed as Gillick competent

Q2 When you speak to Jennifer alone, she tells you she has a 16-year-old boyfriend that her mother doesn't know about. On questioning, she admits that they are having sex but that "he doesn't like condoms". Which of the following is/are correct? Select all that apply.
A You have a duty to inform the police because she is having underage sex
B You should encourage her to talk to her mother about her boyfriend
C You have a duty to tell her mother that she is having sex because she is under 16, but you don't need to tell Jennifer before you do this
D If Jennifer has been assessed as Gillick competent, you do not need to do anything about this
E If she requests it, Jennifer can be prescribed the pill without telling her mother

Q3 You want to give Jennifer further advice regarding sexual health. Which of the following is/are correct? Select all that apply.
A Jennifer should go on the pill so that she doesn't need to use condoms
B She should not be given any contraception, as this is encouraging her to have sex underage
C A coil is the best choice for her because she is young and hasn't had children yet
D She can go on her own for a sexual health screen
E Telling her about all the different methods of contraception will be confusing for her

For answers see page 390

CASE 2
A 3-year-old boy presenting with stridor

A 3-year-old boy is brought in by ambulance to ED, as his parents were concerned about his breathing. Yesterday, he had a hoarse voice, runny nose and temperature, but awoke this morning very distressed, with a barking cough and...
He is febrile, with focal crepitations on his chest. You suspect a lower respiratory tract infection. He has not been eating or drinking. He is to be admitted to Puffin ward under Dr Ross.

Question

Please write up a drug chart (Chart 2a) for him to include:

- Ten puffs of salbutamol inhaler every four hours
- An appropriate choice of oral antibiotics
- 2/3 maintenance fluids
- 30mg oral prednisolone once per day

For answers see page 407

CASE 16

A 12-year-old girl presenting with abdominal pain

A 12-year-old girl presents with a 36-hour history of vague central abdominal pain that has shifted to the right iliac fossa. She is otherwise well. Her periods started four months ago but have been irregular: her last one was one week ago. She has vomited twice since the onset of pain, and complains of dysuria. Whilst waiting to be seen, the child had a bout of watery diarrhoea.

On examination, her HR is 120 bpm (tachycardic) and her temperature is 37.8°C, but all other observations are within normal limits. She is coryzal. She is tender over both sides of her abdomen.

Questions

Q1 Which of the following conditions is on your list of differential diagnoses? Select all that apply.

- A Urinary tract infection
- B Acute appendicitis
- C Ovarian pathology
- D Nonspecific abdominal pain
- E Gastroenteritis
CLINICAL CASES: STANDARD

ANSWERS

ANSWER TO CASE 1
A 14-year-old girl presenting with self-harm

Q1 Which of the following would be the best way to manage Jennifer?

The correct answer is C. She should be assessed before discharge by the child and adolescent mental health team, either in the ED or as an inpatient.

When dealing with a child that has presented with self-harm, it is important to get an accurate assessment of their risk of further self-harm or completed suicide. A formal assessment is required by the child and adolescent mental health team before discharge. Their role is to make a discharge plan to keep the child or young person safe.

A Jennifer should be sectioned because she is suicidal – Incorrect. Although this is a possibility, it would be very rare to need to section a patient following self-harm. This patient appears to be cooperative and not an immediate risk to her own safety, so there are other options that are more appropriate.

B She should be discharged home in her mother’s care because she is a child – Incorrect. Children and young people should generally be admitted following a significant episode of self-harm. This could be admission to a paediatric or adolescent ward, if available. In some circumstances, review by the mental health team may occur in the ED, and if a plan is put in place for a safe discharge, this can be followed, but it is not the norm.

C She should be assessed before discharge by the child and adolescent mental health team, either in the ED or as an inpatient – Correct. Usually patients are only discharged from the ward after being formally assessed by child and adolescent mental health services. This may happen in the ED, depending on when the young person attends. If an assessment is not available on the same day, she should be admitted until she is assessed. It is also important to consider child protection concerns, and it may be appropriate to inform social care.

D She should be discharged on her own because she has been assessed as Gillick competent – Incorrect. As above, she should be admitted. Irrespective of her Gillick competence, she cannot refuse treatment that is deemed in her best interests.

Q2 When you speak to Jennifer alone, she tells you she has a 16-year-old boyfriend that her mother doesn’t know about. On questioning, she admits that they are having sex but that “he doesn’t like condoms.” Which of the following is/are correct?

The correct answers are B. You should encourage her to talk to her mother about her boyfriend and E. If she requests it, Jennifer can be prescribed the pill without telling her mother.

When reviewing a child or young person, it is important to be aware of any possibility of abuse or exploitation. However, it doesn’t necessarily follow that a relationship such as this is harmful. Sharing such information has to be balanced against the autonomy and confidentiality of the patient. Although Jennifer should be encouraged to openly discuss important issues with her parents, if there are no specific concerns about this relationship beyond age, it would be an unnecessary breach of confidentiality for the parents to be informed without explicit consent.

A You have a duty to inform the police because she is having underage sex – Incorrect. Although she is under 16, if she is having consensual sex with someone close to her age, the police do not need to be informed. However, if abuse or exploitation is suspected, social services need to be informed. If she was under 13, this would always be reported, regardless of the nature of the relationship.

B You should encourage her to talk to her mother about her boyfriend – Correct. It is good practice to encourage young people to confide in their parents, even if they are reluctant. Be aware that, within some cultures, this may be particularly difficult for the young person or, in extreme cases, it may put the young person in harm’s way.

C You have a duty to tell her mother that she is having sex because she is under 16, but you don’t need to tell Jennifer before you do this – Incorrect. This should only be done if there are concerns about the child’s safety. If this was the case, it is good practice to inform a young person before breaking confidentiality.

D If Jennifer has been assessed as Gillick competent, you do not need to do anything about this – Incorrect. Although she may be Gillick competent relative to this decision, it is an important opportunity to give advice and any treatment required.

Key Point
Ensure all children presenting to hospital with self-harm have a formal specialist assessment of their risk of suicide before discharge.
Key Point

Although safeguarding concerns are important, do not forget about the right to confidentiality of a child or young person. It should only be broken if doing so may prevent a clear, significant harm.

Q3 You want to give Jennifer further advice regarding sexual health. Which of the following is correct?

The correct answer is D. She can go on her own for a sexual health screen.

Seeing a young person in the Emergency Department provides a good opportunity for further health promotion. Jennifer should be fully informed about her options with regard to contraception, including how to access contraceptive services. Barrier methods are important if there is any risk of sexually transmitted infections.

A Jennifer should go on the pill so that she doesn’t need to use condoms – Incorrect. She may choose to start taking the pill, but condoms are recommended in addition, to reduce the risk of sexually transmitted diseases.

B She should not be given any contraception as this is encouraging her to have sex underage – Incorrect. There is no evidence to back up this statement, and it is important to promote “safe sex”.

C A coil is the best choice for her because she is young and hasn’t had children yet – Incorrect. Although coils are a very effective form of long-acting reversible contraception, it may be slightly more difficult to insert a coil in younger patients. As such, contraceptive implant use is preferable.

D She can go on her own for a sexual health screen – Correct. This makes sexual health services much more accessible to adolescents.

E Telling her about all the different methods of contraception will be confusing for her – Incorrect. Giving Jennifer all of the information about available forms of contraception will enable her to make the most appropriate choice for her. This gives her autonomy over her own care and increases the chances that she will use contraception effectively.

Q1 What is the most likely diagnosis?

The correct answer is E. Croup.

ANSWER TO CASE 2

A 3-year-old boy presenting with stridor

Q1 What is the most likely diagnosis?

The five options given are the five commonest causes of stridor, which should be considered in the differential diagnosis of any case with stridor.

A Epiglottitis – Incorrect. Stridor is present, but children with epiglottitis appear unwell, with high fevers and drooling.

B Bacterial tracheitis – Incorrect. Unlike children with croup, these children are toxic, with rapidly progressive airway obstruction. Onset is not as rapid as with epiglottitis. Bacterial tracheitis is rare but very serious. It can be difficult to differentiate clinically from epiglottitis, but the treatment is the same.

C Anaphylaxis – Incorrect. Anaphylaxis is associated with an urticarial rash, wheeze, shock, and often vomiting and diarrhoea. This patient has no clear precipitant for anaphylaxis and none of the other features.

D Inhaled foreign body – Incorrect. A barking cough and infective symptoms make this unlikely. However, sudden-onset respiratory distress can be a sign of foreign body inhalation, particularly in a young child. It is important to ask about the possibility of foreign body inhalation specifically in the history.

E Croup – Correct. The progressive nature of the symptoms and worsening overnight are classical of croup. The patient is interacting well, with only a low-grade fever, and is not tachycardic. All these features suggest that, despite presence
Case 1
A 5-year-old girl presenting with an acute neck swelling

Case 2
A 10-year-old boy with newly diagnosed diabetes

Case 3
A 14-year-old girl presenting with delayed puberty

Case 4
A 12-day-old baby presenting with poor feeding and vomiting

Case 5
A 5-year-old boy presenting with a headache

Case 6
A 13-month-old girl presents with severe pallor

Case 7
A 4-year-old presenting with thrombocytopenia

Case 8
A 4-month-old boy presenting with severe respiratory distress

Case 9
A 1-year-old boy presents with an itchy rash

Case 10
A 3-year-old boy presenting with possible appendicitis

Case 11
A 6-hour-old girl presenting with bilious vomiting

Case 12
A baby born at 32 weeks gestation

Case 13
An 11-month-old presenting with possible developmental delay

Case 14
A 22-month-old presenting with delayed gross motor skills

Case 15
A 5-day-old baby with a genetic condition picked up on newborn screening

Case 16
A 9-year-old boy presenting with tight foreskin

Case 17
A 2-year-old presenting with bony deformities

Case 18
A 12-month-old presenting with faltering growth
449 Case 19
A 2-year-old presenting with a blue episode

449 Case 20
A 5-week-old girl presenting with respiratory distress and poor weight gain

450 Case 21
A 4-year-old boy presenting with nephrotic syndrome

450 Case 22
An 11-year-old boy presenting with haematuria

451 Case 23
A 5-year-old girl presenting with a purpuric rash

CASE 1
A 5-year-old girl presenting with an acute neck swelling

A previously fit and well 5-year-old girl is reviewed in ED with a progressively enlarging, left-sided neck swelling. She reports having a sore throat and has a fever of 38°C, but observations are otherwise normal.

Questions
Q1 What clinical feature(s) below would be of concern and prompt further investigation?
A Night sweats
B Coryzal symptoms
C Hepatosplenomegaly
D Stridor
E Weight loss

Q2 On examining the child, what finding(s) would suggest acute infection? Select all that apply.
A Overlying erythema
B Multiple, bilateral cervical lymph nodes.
C Solitary, painless neck mass
D Fluctuant mass
E Fever

Q3 If a non-infective pathology is suspected, which three of the following should be organised as first-line investigations?
A MRI scan of the neck
B Ultrasound scan
C Blood film
D FBC
E Excision biopsy

Q4 With regard to neck masses in children, mark the following statements true or false.
A The most common histological feature on biopsy is reactive hyperplasia
B Most palpable lymph nodes over 0.5 cm will require an excision biopsy
C Branchial cysts most commonly present in the neonatal period
D Supraclavicular swellings are common in children
E Neck swellings are rarely associated with infectious mononucleosis

For answers see page 452

CASE 2
A 10-year-old boy with newly diagnosed diabetes

Jamie is a sporty and active 10-year-old. His mother noticed that recently his clothes have seemed too big for him, and he was always complaining of feeling tired. Jamie was very embarrassed to admit that he had wet the bed on two occasions this week. Observations are within normal limits.

On examination, Jamie is very thin, with signs of recent weight loss. Jamie’s urine dipstick shows 4+ glucose, 2+ ketones, 1+ leucocytes and is negative for nitrites. A new diagnosis of diabetes is suspected.

Questions
Q1 Which of the following best fits with a diagnosis of Type 1 diabetes in this child?
A A high blood glucose, only if it is seen following a formal oral glucose tolerance test
B A random blood glucose >11.1 mmol/L
C The presence of polyuria and polydipsia
D 4+ of glucose on urine dipstick
E The presence of ketonuria

Q2 Regarding the aetiology of diabetes, mark the following statements true or false.
A All diabetes in children is type 1
B Type 1 diabetes mellitus is an autoimmune condition caused by damage to pancreatic alpha cells
CASE 1

A 2-year-old girl presenting with knee pain

Hayley is a 2-year-old girl who has been brought to ED by her parents. She banged her right knee on a table two weeks ago. It was sore at the time, but she has subsequently mobilised on it. She has been unable to weight-bear on her right leg for the last 48 hours and she has a swollen right knee. Her HR is 155 (tachycardic) and her temperature is 38.5°C, with observations otherwise within normal limits. She has been off her food for the last day and “hasn’t been herself”, according to her parents. Initial bloods show a white cell count of 13.1 x 10⁹/L. On examination, her right knee is markedly swollen and is held in a flexed position (around 60°). She is reluctant to flex or extend the knee due to pain.

Questions

Q1 What should be the working diagnosis?

A Fracture
B Knee ligament injury
C Septic arthritis
D Transient synovitis
E Osgood-Schlatter disease

Q2 What additional investigations might be helpful in establishing a diagnosis? Select all that apply.

A X-ray right knee
B CRP
C ESR
D Ultrasound right knee
E X-ray right hip

Q3 What is the next best stage in management of this patient?

A Immediately commence broad-spectrum antibiotics
B Admit and observe the patient
C Immediately commence broad-spectrum antibiotics and then aspirate the knee
INTRODUCTION

When approaching a potentially unwell child, it is important to remember that children are not just small adults. Bear in mind the following:

- The child's parents, relatives or carers may not have the whole story, especially if the child has been in someone else's care, so a collateral history may be necessary.
- The parents' "sixth sense" about their child's health should always be taken seriously. Equally, parents may underestimate the seriousness of their child's condition.
- Younger children may not be able to give any history, or the history given may be misleading.
- All children, but particularly younger infants, may have underlying congenital abnormalities that have remained undetected until presentation in extremis.
- Children can compensate physiologically for severe illness. As such, signs of deterioration may not be evident until late in the illness course.
- Children are dependent on adult carers for many things, particularly in early life. This can lead to opportunities for abuse, which can be easily missed if not specifically assessed.
- Decisions made during childhood with regards to health can impact on all areas of development.
- Pay special attention to putting the child at ease. The doctor should make a point of introducing themselves to the child individually, and perhaps let them lead introductions to the rest of the family. Toys are widely available in paediatric healthcare settings and they can be used effectively to relax younger children.

PREPARATION

Usually, there will be time to prepare before seeing a child. During this time, review any pre-existing information. This may include: ambulance triage notes, nursing triage notes, referral letters, previous clinic letters, hospital discharge letters and current hospital notes. Often, allergies or social concerns are automatically highlighted on hospital computer notes. There may also be a handover from a colleague: don't be afraid to ask them questions to clear uncertainty. Blood tests and imaging may have been requested, or recent investigation results may be available. This will give an initial impression of the key issues and the parent/patient agenda before going into the consultation.
CASE 3: A 13-YEAR-OLD BOY PRESENTING WITH A WHEEZY EPISODE

Social History

<table>
<thead>
<tr>
<th>Question</th>
<th>Justification</th>
<th>Answer</th>
<th>Evolving thought process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who is currently at home? Does Fred have a social worker? Is dad around? Does anyone smoke at home?</td>
<td>Find out if there are any social concerns, or if wider support is needed. Smoking increases risk of infection in the child.</td>
<td>"My husband and I live together, and have been happily married for several years. We are both non-smokers, and there is no social worker."</td>
<td>No social concerns at present.</td>
</tr>
</tbody>
</table>

Immunisation history is not relevant in a six-week-old baby, as the first immunisations are at eight-weeks-old.

Concluding

<table>
<thead>
<tr>
<th>Question</th>
<th>Justification</th>
<th>Answer</th>
<th>Evolving thought process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there anything that I've missed, or anything that you are particularly concerned about? Do you have any questions for me at the moment?</td>
<td>May identify useful information that has been missed. Will also help framing communication with the mother.</td>
<td>"I am really keen to go home." Needs a careful and sensitive discussion about a management plan.</td>
<td></td>
</tr>
</tbody>
</table>

PRESENTING YOUR FINDINGS

Fred is term baby who presents at six weeks of age very well in himself, but with a one-off temperature at home of 39°C.

There is no difficulty in breathing, no seizures, no rashes, no vomiting and no diarrhoea. Fred is feeding well at the breast, with a normal number of wet nappies.

Jamie was born by an elective C-section for breech, required no resuscitation and went home with mum after a normal newborn baby check. Mum had one raised temperature during labour, and a background of Group B streptococcus, with two doses of antibiotics given during labour. Antenatal scans are normal. Fred is growing well, tracking the 50th centile. Grandma and granddad both currently have an upper respiratory tract infection (URTI), but there is no family history of note. This is mum's second child, and the other child is well. There are no social concerns.

I am concerned about possible infection, particularly considering the maternal background, although there is no clear focus for infection identified.

After doing a full examination, I will cannulate the baby, and check the FBC, U&E, CRP and blood cultures. I will get a clean catch urine sample, and a chest X-ray if there are any signs of respiratory disease on examination. A nasopharyngeal aspirate will be helpful if the baby has signs of possible bronchiolitis. In view of the history of Group B streptococcus and fever, I would also perform a lumbar puncture. I will start broad spectrum antibiotics. Fred is currently feeding well, so I'd be happy for him to continue breastfeeding at present.

CASE 3

A 13-year-old boy presenting with a wheezy episode

Doctor Briefing

You are asked to see a boy, Steven, 13-years-old, in the ED who has started wheezing at home. Please take a history from his mother, with a view to making a diagnosis.

Mother (actress) Briefing

Steven is your only child, and you are worried about him because he is wheezing and has difficulty breathing. He is breathing fast and having to pause in the middle of sentences to catch his breath. His shortness of breath has come on gradually. He does not have a fever but he has had a bit of a cold for the last few days. He is off his food, but drinking about two-thirds of normal. Steven occasionally has had wheezy episodes in physical education lessons, but he usually gets better quickly.

Steven is otherwise well, is not on any medication and has never attended hospital before. He was born at 35 weeks by a normal vaginal delivery. He is up-to-date with his immunisations, developing normally, growing well and performing well academically.

You are a single mother, but are coping well. Steven stays with Dad every other weekend. You don't smoke. Dad and the paternal granddad both have eczema.

You are concerned because this is the worst you've ever seen Steven, and he can't talk to you properly. If specifically asked, you are also worried that his dad smokes and that this might contribute to the breathing problems.

Assessment

For all scenarios:

» Introduction.
» Ask a mixture of open and closed questions.
» Ensure understanding throughout.
» Summarise your findings to the parents, and give them an opportunity to raise any other issues.
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>527</td>
<td>Introduction</td>
</tr>
<tr>
<td>527</td>
<td>Medical Devices</td>
</tr>
<tr>
<td>527</td>
<td>Central Venous Access</td>
</tr>
<tr>
<td>528</td>
<td>Respiratory Support</td>
</tr>
<tr>
<td>530</td>
<td>Surgical Conduits</td>
</tr>
<tr>
<td>531</td>
<td>Neurosurgical</td>
</tr>
<tr>
<td>531</td>
<td>Mobility Aids and Orthoses</td>
</tr>
<tr>
<td>533</td>
<td>Cardiology Examination</td>
</tr>
<tr>
<td>533</td>
<td>Starting the Examination</td>
</tr>
<tr>
<td>534</td>
<td>Inspection</td>
</tr>
<tr>
<td>537</td>
<td>Palpation</td>
</tr>
<tr>
<td>538</td>
<td>Auscultation</td>
</tr>
<tr>
<td>541</td>
<td>Completing the Examination</td>
</tr>
<tr>
<td>542</td>
<td>Developmental Assessment</td>
</tr>
<tr>
<td>543</td>
<td>General Advice</td>
</tr>
<tr>
<td>543</td>
<td>Starting the Examination</td>
</tr>
<tr>
<td>543</td>
<td>Gross Motor Skills</td>
</tr>
<tr>
<td>544</td>
<td>Fine Motor and Vision</td>
</tr>
<tr>
<td>545</td>
<td>Speech, Language and Hearing</td>
</tr>
<tr>
<td>545</td>
<td>Social and Self-care</td>
</tr>
<tr>
<td>545</td>
<td>Completing the Examination</td>
</tr>
<tr>
<td>552</td>
<td>ENT Examination</td>
</tr>
<tr>
<td>552</td>
<td>Starting the Examination</td>
</tr>
<tr>
<td>552</td>
<td>Inspection</td>
</tr>
<tr>
<td>553</td>
<td>Palpation</td>
</tr>
<tr>
<td>553</td>
<td>Special Tests</td>
</tr>
<tr>
<td>554</td>
<td>Completing the Examination</td>
</tr>
<tr>
<td>555</td>
<td>Examination of the Eye</td>
</tr>
<tr>
<td>555</td>
<td>Starting the Examination</td>
</tr>
<tr>
<td>556</td>
<td>Inspection</td>
</tr>
<tr>
<td>556</td>
<td>Special Tests</td>
</tr>
<tr>
<td>556</td>
<td>Strabismus (malalignment of the eyes)</td>
</tr>
<tr>
<td>558</td>
<td>Completing the Examination</td>
</tr>
<tr>
<td>558</td>
<td>Gastrointestinal Examination</td>
</tr>
<tr>
<td>559</td>
<td>Starting the Examination</td>
</tr>
<tr>
<td>559</td>
<td>Inspection</td>
</tr>
<tr>
<td>561</td>
<td>Palpation</td>
</tr>
<tr>
<td>562</td>
<td>Percussion</td>
</tr>
<tr>
<td>563</td>
<td>Auscultation</td>
</tr>
<tr>
<td>563</td>
<td>Completing the Examination</td>
</tr>
<tr>
<td>564</td>
<td>Musculoskeletal Examination</td>
</tr>
<tr>
<td>565</td>
<td>Starting the Examination</td>
</tr>
<tr>
<td>565</td>
<td>pGALS</td>
</tr>
<tr>
<td>566</td>
<td>Inspection</td>
</tr>
<tr>
<td>569</td>
<td>Palpation</td>
</tr>
<tr>
<td>569</td>
<td>Movement</td>
</tr>
<tr>
<td>572</td>
<td>Hypermobility</td>
</tr>
<tr>
<td>572</td>
<td>Completing the Examination</td>
</tr>
<tr>
<td>573</td>
<td>Examination of a Neck Mass</td>
</tr>
<tr>
<td>574</td>
<td>Starting the Examination</td>
</tr>
<tr>
<td>574</td>
<td>Inspection</td>
</tr>
<tr>
<td>574</td>
<td>Palpation</td>
</tr>
<tr>
<td>574</td>
<td>Auscultation</td>
</tr>
<tr>
<td>574</td>
<td>Completing the Examination</td>
</tr>
<tr>
<td>575</td>
<td>Neurological Examination</td>
</tr>
<tr>
<td>576</td>
<td>Starting the Examination</td>
</tr>
<tr>
<td>576</td>
<td>Examination of Upper Limbs</td>
</tr>
<tr>
<td>580</td>
<td>Examination of Legs</td>
</tr>
<tr>
<td>585</td>
<td>Examination of Gait</td>
</tr>
<tr>
<td>586</td>
<td>Cranial Nerve Examination</td>
</tr>
<tr>
<td>591</td>
<td>Cerebellar Examination</td>
</tr>
<tr>
<td>592</td>
<td>Examination of the Head</td>
</tr>
</tbody>
</table>
INTRODUCTION

Paediatric examinations can be fun and are a chance to make your patient smile and laugh. They are a balance between systematic and opportunistic examination. Although some children can be unwilling or too upset to be examined, using play techniques can help win over any tantrum (Figure 1-4). For some children, this will be their first encounter with a doctor so keeping the interaction friendly helps to minimise fear. With older children, chat to them, find out their likes and dislikes and explain to them what you are going to do before you do it, at each stage. Wherever possible, remain at the same height as the child to reduce intimidation.

Practice is essential, particularly before a clinical exam. Use every opportunity to examine lots of patients, including siblings of inpatients and young relatives. Practice will make it easier to combine clinical knowledge with examination findings to form a diagnosis – or at least it will draw some broad differentials.

The examination chapter is laid out in order of some of the key systems that feature in both acute, outpatient and exam settings. In nearly all circumstances all systems will need to at least briefly be assessed.

Certain rules apply to all examinations:

▶ Remember to wash hands before seeing a patient.
▶ Begin with an introduction to both the parent and the child.
▶ Explain what is going to be done before doing it.
▶ With younger children, take consent from parents. Tell the child what is going to be done. If the child is asked whether it is OK to examine their chest and they then say “no,” it is then difficult to proceed. Instead say, “now I am going to listen to your chest.”
▶ When examining for pain, look at the child’s face to gauge their reaction rather than the part of the body being examined.
▶ When finished, thank the child.

MEDICAL DEVICES

Children will often have medical devices in situ. A good knowledge of it may identify relevant past medical history, as well as facilitate ongoing management (e.g. knowing where blood samples might be taken from).

Central Venous Access

▶ Portacath®. This is an implanted port that sits under the skin connected to a central venous catheter (Figure 5). The port is accessed with a specific needle (Figure 6). Medication can be given via the port and blood can be taken from it. It is seen most commonly in patients undergoing long-term intravenous treatments, such as chemotherapy, regular blood transfusions (e.g. sickle cell disease, thalassaemia) or regular intravenous antibiotics (e.g. cystic fibrosis). The main complications are infection, port dislodging (the port can sometimes flip too), thrombosis or blockage of the catheter.

▶ Hickman line. This is a brand of tunnelled central venous catheters used for long-term treatment such as chemotherapy (Figure 7). Medication may be given via the line and blood can be taken from the line. If not used regularly, the lines should be flushed. As with any central venous device, blockage, dislodgement, thrombosis and infection can occur. The line can also split; it may sometimes be possible to repair small splits depending on their location. Note that a Broviac line is similar to a Hickman line, but the lumen is smaller, meaning it can be used in smaller children and infants.

▶ PICC (Peripherally Inserted Central Catheter) line. These may be inserted under local or general
Inspect the mouth, looking mainly at dentition and for ulceration.

FIGURE 77

- **Dentition.** Poor dentition is associated with malnutrition.
- **Glossitis.** Inflammation of the tongue. This is associated with iron, B12 or folate deficiency.
- **Angular stomatitis.** Inflammation of the corner of the mouth. May relate to iron, thiamine, or B12 deficiencies.
- **Freckling around the mouth.** This is associated with Peutz-Jeghers syndrome, which can present with GI bleeding from polyps.
- **Dysmorphic features.** Facial features can give a clue as to possible pathology in a syndrome. For example, Alagille syndrome is associated with a broad forehead, sunken eyes, small chin and chronic liver disease.

Abdomen

Ensure that the child is lying flat with their arms by their sides. Ask them to point to the site of any pain. Inform the child that this will be examined last and

- **Lymph nodes.** Palpate lymph nodes in the neck and supraclavicular fossa.
- **Gynaecomastia.** This may be from excess oestrogens in chronic liver disease. It is also a normal variant, particularly in pubertal boys.
- **Spider naevi.** This is a central red spot with extensions radiating out like a spider’s web. It is due to dilated blood vessels, and occluding the central spot will result in seeing the emptied peripheral veins filling from the centre. Classically seen in the superior vena cava distribution.
- **Central venous access devices.** There may be a temporary central line, e.g. post liver transplant, or a long term tunnelled line, e.g. those on long term TPN. If they have since been removed, scars might be seen.

Neck and Upper Trunk

- **Lymph nodes.** Palpate lymph nodes in the neck and supraclavicular fossa.
- **Gynaecomastia.** This may be from excess oestrogens in chronic liver disease. It is also a normal variant, particularly in pubertal boys.
- **Spider naevi.** This is a central red spot with extensions radiating out like a spider’s web. It is due to dilated blood vessels, and occluding the central spot will result in seeing the emptied peripheral veins filling from the centre. Classically seen in the superior vena cava distribution.
- **Central venous access devices.** There may be a temporary central line, e.g. post liver transplant, or a long term tunnelled line, e.g. those on long term TPN. If they have since been removed, scars might be seen.

FIGURE 78

Common abdominal scars in paediatrics.

1. **Kocher’s incision**
 - Biliary/liver surgery e.g. Kasai procedure for biliary atresia. Extended transversely for liver transplant.

2. **Midline laparotomy**
 - Upper midline — upper GI surgery e.g. Nissen’s fundoplication for GORD. Longer midline incisions are used for major abdominal surgery more generally.

3. **Transverse upper abdominal incision**
 - Congenital diaphragmatic hernia repair. Splenic surgery.

4. **Pyloromyotomy scar**
 - Pyloric stenosis surgery.

5. **Appendicectomy scar**
 - Appendicitis surgery.

6. **Umbilical/sub-umbilical scar**
 - Hernia repair, exomphalos repair. Gastrochisis repair has scar within/in place of the belly button.

7. **Point incision scar**
 - Drains, ports, or biopsy sites.

8. **Inguinal scar**
 - Hernia repair.

9. **Lateral thoracolumbar scar**
 - Renal surgery e.g. nephrectomy.

10. **Hockey-Stick scar**
 - Renal transplant.
Assess for shifting dullness as follows: A. Percuss from the centre of the abdomen outwards, until a dull percussion note is found (representing fluid). B. Pinpoint the location where the note becomes dull. C. At this point, the examiner should keep their hand in the percussed position, whilst rolling the patient towards them. Wait 30 seconds, and then re-percuss. If the note is resonant, this implies that the fluid has shifted under gravity. Confirm this by rolling the patient back into their original position and re-percussing. The percussion note should become dull again.

Bladder. The bladder is dull to percuss, and if enlarged, can be measured by percussion up from the suprapubic region.

Auscultation

Listen around 2 cm above the umbilicus:

- **Bowel sounds.** These may be normal, tinkling e.g. bowel obstruction, or absent e.g. peritonitis.
- **Renal bruit.** Present in renal artery stenosis.

Completing the Examination

Depending on the presenting symptoms, as well as performing a general paediatric examination, it is important to also inspect:

- **The anus.** Looking for fistula/skin tags (associated with Crohn's disease).
- **The external genitalia and hernia orifices.** Abdominal pain could be referred pain, e.g. from testicular torsion.
- **Rashes.** e.g. purpura (HSP), pyoderma gangrenosum and erythema nodosum (IBD).
- **Pitting oedema.** This may be from hypoalbuminaemia, e.g. chronic liver disease.

Bedside tests include:

- Review the observation chart.
- Plot the height and weight on an age and sex appropriate chart.
- Stool sample.
- Urine dipstick.
- Blood glucose.
CASE SCENARIO

SCENARIO 8

Claude is a 4-year-old boy, who attends the renal outpatient clinic for routine review. You are asked to perform an abdominal/renal examination on him, and present your findings to the consultant.

EXAMINATION CHECKLIST

<table>
<thead>
<tr>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global assessment of child on approach.</td>
</tr>
<tr>
<td>Inspection.</td>
</tr>
<tr>
<td>Palpation.</td>
</tr>
<tr>
<td>Percussion.</td>
</tr>
<tr>
<td>Auscultation.</td>
</tr>
<tr>
<td>Completing the examination.</td>
</tr>
<tr>
<td>Bedside tests.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alert, active, and looks well.</td>
</tr>
<tr>
<td>• Previous central venous access scar.</td>
</tr>
<tr>
<td>• Egg-shaped mass over midline.</td>
</tr>
<tr>
<td>• No organomegaly.</td>
</tr>
<tr>
<td>• Normal.</td>
</tr>
<tr>
<td>• Awaning.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evolving thought process</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unlikely to have an acute pathology.</td>
</tr>
<tr>
<td>• Has had major abdominal surgery in the past, which is likely to be the time when central venous access was acquired. Gastrostomy implies that there are current/past feeding difficulties.</td>
</tr>
<tr>
<td>• Likely transplanted kidney. Given this information, the scar to the right of the umbilicus may have been a site of peritoneal dialysis.</td>
</tr>
<tr>
<td>• No additional pathology identified.</td>
</tr>
<tr>
<td>• No additional pathology identified.</td>
</tr>
<tr>
<td>• Although looks well, possible faltering growth suggested by previous chronic disease, necessitating renal transplant, and gastrostomy being in situ.</td>
</tr>
</tbody>
</table>

MUSCULOSKELETAL EXAMINATION

A partial musculoskeletal or locomotor examination is undertaken in every paediatric assessment: gait is more often than not observed, as is an assessment of muscle bulk and gross movements. Consider the following more specific circumstances:

1. In a child presenting with joint pain, stiffness, or loss of function (e.g., difficulty with handwriting). Is this an isolated joint pathology/injury or part of a wider problem?
2. Screening for associated musculoskeletal involvement in a child with a predisposing condition. For example, psoriasis, IBD.
3. Assessment of hypermobility.

Box 6: Clinical features of joint disease

- Pain.
- Swelling.
- Stiffness.
- Erythema.
- Locking.
- Instability.
- Loss of ability/function.

Claude is a 4-year-old boy who was seen in the renal clinic for review.

He looks well. He has evidence of previous central venous access. He has a gastrostomy in situ, a small scar to the right of his umbilicus and a midline laparotomy scar. The abdomen is soft and non-tender throughout, with no clinically detectable organomegaly. There is a firm, non-tender, egg-sized mass underlying the laparotomy scar. There was no associated bruit. He has no other stigmata of disease.

These findings are consistent with a renal transplant. The scar to the right of his umbilicus is probably from previous peritoneal dialysis. It is not clear why he has a gastrostomy, but it could be for gastrointestinal or neurological pathology.

To complete my examination, I would like to review the observation chart, instick the urine and formally plot Claude on a growth chart.
In under 1:

- Primitive reflexes as described in Table 30.

Sensation

Light Touch, Pain, and Temperature (Spinothalamic Tract)

- Light touch, pain and temperature are all tested as described in the arms section. Dermatomes for the legs are shown in Figure 123.

Proprioception and Vibration Testing (Dorsal Column)

- Proprioception. Hold the big toe either side of the interphalangeal joint, and perform this test as shown with the arms. If proprioception is not intact at the interphalangeal joint, test it at the carpometatarsal joint, then the ankle, and then the knee.

- Vibration sensing. Vibrate a tuning fork and place it on the big toe, and perform this test as shown for the arm. If they cannot identify this, repeat on the malleolus, and then the tibial shaft, the tibial tuberosity, and finally the anterior iliac crest.

Sensation tests are summarised in Figure 124.

Peripheral nerves are less commonly damaged in the lower limbs than the upper limbs. However things to look out for are shown in Table 31.

Co-ordination

- Heel-shin test. Figure 125.

TABLE 31: Peripheral nerves of the lower limb

<table>
<thead>
<tr>
<th>Nerve</th>
<th>Motor loss</th>
<th>Sensory loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obturator nerve (L2-4)</td>
<td>Hip adduction.</td>
<td>Medial thigh.</td>
</tr>
<tr>
<td>Common peroneal nerve (L4-S3)</td>
<td>Foot dorsiflexion loss gives characteristic foot drop. Foot eversion loss gives inverted posture.</td>
<td>Anterolateral lower leg. Dorsum of foot/toes.</td>
</tr>
<tr>
<td>Sciatic nerve (L4-S3)</td>
<td>Paralysis of all muscles below knee—gives foot drop from weight of foot (via tibial and common fibular branches).</td>
<td>Posterolateral/anterolateral lower leg. Plantar surface of foot (tibial branch). Lateral lower leg, and dorsal foot (common fibular branch).</td>
</tr>
</tbody>
</table>
CONTENTS

605 Introduction
605 Theories of Communication
 605 Five Components of Communication
 605 Ideas, Concerns, Expectations
605 Key Components of Communication
 605 Preparation and Location
 606 Creating Rapport
 606 Acknowledging Agenda
 606 Verbal Skills
 606 Non-Verbal Skills
 606 Active Listening
606 Communicating with Children of Different Ages
 606 Baby
 607 Pre-verbal Child
 607 Verbal Child
 607 Adolescent/Young Person

607 Parents
607 Communication Challenges
607 Clinical Cases
 607 Case 1: A newborn baby presenting with ambiguous genitalia
 608 Case 2: A 3-day-old baby with a new diagnosis of Down Syndrome
 609 Case 3: A woman at 29 weeks gestation requiring counselling for pre-term delivery
 609 Case 4: A 4-year-old boy inadvertently given the wrong dose of paracetamol.
 610 Case 5: A 15-year-old girl non-compliant with her diabetes medication
 611 Case 6: A 6-month-old boy who has not been vaccinated due to parental choice

612 References and Further Reading
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>614</td>
<td>Introduction</td>
</tr>
<tr>
<td>614</td>
<td>Vascular Access</td>
</tr>
<tr>
<td>614</td>
<td>Capillary Blood Gas</td>
</tr>
<tr>
<td>616</td>
<td>Venous Blood Sampling</td>
</tr>
<tr>
<td>619</td>
<td>Arterial Line Sampling</td>
</tr>
<tr>
<td>620</td>
<td>Intravenous Cannulation</td>
</tr>
<tr>
<td>622</td>
<td>Umbilical Venous and Arterial Cannulation</td>
</tr>
<tr>
<td>626</td>
<td>Emergency Umbilical Venous Catheterisation</td>
</tr>
<tr>
<td>627</td>
<td>Intraosseous Needle Insertion</td>
</tr>
<tr>
<td>628</td>
<td>Airway Procedures</td>
</tr>
<tr>
<td>628</td>
<td>Bag-Valve-Mask Ventilation</td>
</tr>
<tr>
<td>630</td>
<td>Nasopharyngeal Airway Insertion</td>
</tr>
<tr>
<td>631</td>
<td>Oropharyngeal Airway Insertion</td>
</tr>
<tr>
<td>631</td>
<td>Laryngeal Mask Airway</td>
</tr>
<tr>
<td>632</td>
<td>Neonatal Intubation</td>
</tr>
<tr>
<td>636</td>
<td>Surfactant Administration</td>
</tr>
<tr>
<td>637</td>
<td>Asthma</td>
</tr>
<tr>
<td>637</td>
<td>Asthma Inhalers</td>
</tr>
<tr>
<td>639</td>
<td>Peak Flow Measurement</td>
</tr>
<tr>
<td>640</td>
<td>Additional Procedures</td>
</tr>
<tr>
<td>640</td>
<td>Lumbar Puncture</td>
</tr>
<tr>
<td>642</td>
<td>Non-Invasive Blood Pressure Measurement</td>
</tr>
<tr>
<td>642</td>
<td>Nasogastric Tube Insertion</td>
</tr>
<tr>
<td>644</td>
<td>Urinalysis</td>
</tr>
<tr>
<td>645</td>
<td>Baby Care</td>
</tr>
<tr>
<td>645</td>
<td>Changing a Nappy</td>
</tr>
<tr>
<td>646</td>
<td>Dressing and Undressing a Baby</td>
</tr>
<tr>
<td>647</td>
<td>Preparing Baby Milk Formula</td>
</tr>
</tbody>
</table>
INTRODUCTION

The key to success is preparation and practice. The best way to accomplish this is to discuss the procedure with a senior colleague and observe the skill in order to understand the process, before performing it under supervision. In addition to knowing the steps, it is important to know the indication for a procedure and its impact on management. This chapter contains a brief “how to” guide for each of the key competencies expected of junior doctors and paediatric trainees.

Important themes common to all procedures include:

- **Explanation.** Explain in lay terms what is going to be done, and why, to the child and parents. Invite questions.
- **Consent.** Gain informed consent and ensure the patient and parents are aware of any serious or common side effects. Consent may be written or verbal depending on the procedure.
- **Pain relief.** This may involve the use of oral/intranasal/intravenous/topical anaesthetics, cold spray, or oral sucrose.
- **Distraction.** Nearly all procedures are better tolerated with the use of appropriate distraction beforehand. Involve the play specialist team where possible. If unavailable, utilise smartphone apps/videos/toys as appropriate.
- **Aseptic technique.** Observe aseptic or sterile conditions as appropriate.
- **Keep calm.** Ensure adequate preparation, with appropriate support to hand. Being calm increases the likelihood of success. Know what to do in the event of any unexpected events.
- **Post-procedure.** After each procedure, clear the equipment, follow-up results and act on results as necessary.

A flow chart for performing procedures is shown in Figure 1.

VASCULAR ACCESS

Capillary Blood Gas (“heel prick”)

Arterial blood gases are rarely performed in paediatrics unless from a secure arterial line in a high dependency setting. As a result, capillary gases fulfil an important role in the assessment of the ill child. Capillary blood gases are one of the most readily available objective barometers of a child’s health. They are quick and easy to obtain, with almost immediate results.

Indications

- Acutely unwell patient, e.g. respiratory compromise, severe sepsis.
- Checking glucose, bilirubin, haemoglobin or electrolytes.
- Post intubation or for assessing the efficacy of ventilation.
- Early identification of the need for an invasive procedure. Involve play specialist. Early application of local anaesthetic when needed. Depending on age, check child has an understanding of what needs to be done.
- If parents wish to be actively involved, begin to get child into any appropriate holding position. Check that all equipment and team-mates are ready. Ensure the child is actively distracted.
- Distractor (play specialist or holder) should be the lead voice for communicating/coordinating between medical staff and child, reducing unfamiliarity for the child. Check that the team is ready: holder, distractor, person doing the task and parents (if opting to be present). Minimise the number of people in the room.
- Thank the child and praise their efforts, e.g. with cheering, a high five, a sticker or a bravery certificate. Explain the ongoing plan again clearly, e.g. “quick scratch coming” for cannulation.
- Where possible, use a procedure room. If appropriate, ask the child if they would like a warning, e.g. “quick scratch coming” for cannulation.
- Early application of local anaesthetic when needed.
- Where possible, use a procedure room. If appropriate, ask the child if they would like a warning, e.g. “quick scratch coming” for cannulation.
- Skin cleansing solution, e.g. 70% isopropyl alcohol skin disinfectant.
- Non-sterile gloves.
- Clean tray.
- Gauze/cotton wool.
- Vaseline.
- Lancet.
- Capillary gas tube.
- Sharps bin.
- Plaster.
- Capillary tube caps/clot catcher (if available).
- Blood gas machine.

FIGURE 1

Flowchart for performing an invasive procedure.
1. Introduce oneself to the patient/family and explain the purpose of the procedure.
2. Wash hands and put on gloves.
3. Identify the best place to perform the test:
 - In a neonate, this will be a heel prick. This means selecting a spot around the periphery of the inferior aspect of the heel. Steer clear of the centre of the heel, where there are fewer capillaries and more nerve fibres (Figure 2).
 - In a child over six months, it may be easier to use the lateral aspect of the thumb, fingers or toes.
4. Gently rub the site and/or gently push down at the intended site a few times to improve capillary blood flow. Check for any previous site of capillary blood sampling that will still bleed without requiring another piercing of the skin.
5. Place a paper towel under the intended puncture site to catch any spillages.
6. Clean the area and allow it to dry (Figure 3).
7. Apply a thin layer of Vaseline over the area to be punctured (note this is optional and not used in some neonatal units). This will ensure that the blood stays in a bleb around the needle prick site rather than smearing elsewhere, making it easier to collect.
8. Take a mildly firm hold of the heel or digit and stretch the skin. Use the lancet to pierce the desired area (Figure 4).
9. Gently squeeze the area rhythmically, starting distally from the site of puncture and allowing reperfusion between squeezes. This should produce a steady bleb of blood from the site.
10. Hold the capillary tube horizontal or a little elevated. Holding it at a downhill angle may mean air bubbles are sucked in as the blood is collected quicker than it is produced. Holding it level or “uphill” from the patient will prevent this (Figure 5).
11. Gently move the end of the capillary tube to the bleb of blood and fill it to the end. Aim to only collect blood if it is free flowing so that clots are less likely to enter the capillary tube. If air bubbles enter, empty the capillary tube up until the point of the air bubble on gauze and refill the tube.
12. Once filled sufficiently, put the gas tube on a tray. Wipe the puncture site with some cotton wool or gauze (Figure 6).
13. Apply a plaster if needed (Figure 7). Note that this will not stick if Vaseline is still present.
14. If available, put a cap on both ends of the capillary tube as this will prevent spillage on transfer to the gas machine.
15. Thank the parents/patient and take the sample to the blood gas machine.
16. Remove the caps from the gas tube and put a clot catcher on the end to be inserted into the gas machine (if required).
17. Place lancet and capillary tube in a sharps bin.
18. Once the gas result has been obtained, immediately record it and make a plan based on the findings.
The Importance of Good Prescribing

Good prescribing is essential for safe, effective clinical practice. It remains, however, a common source of potentially harmful errors. This chapter will focus on the art of paediatric prescribing and discuss common pitfalls. Almost all errors may be avoided by being meticulous and thoughtful. Prescriptions will be checked by pharmacy and nursing staff before being administered, but the ultimate responsibility remains with the prescriber.

Remember:
- Do not become complacent. It is easy to feel that prescribing common medications is a mundane chore which does not require full attention. Try to remember that every prescription is a complex process. There is no shame in looking up drug doses and no honour in prescribing medications solely from memory.
- Never prescribe an unfamiliar medication. Do not prescribe a drug at the behest of a nurse or senior colleague, as ultimately the prescriber takes responsibility for it. Look up the drug, and know its indications and side effects before prescribing. If still unsure, seek advice from a senior doctor or pharmacist.
- Always check the allergy status of the patient before prescribing. This should always be filled out on the drug chart, and this simple step can prevent potentially fatal consequences.
- Be aware of local and national protocols and know where you can access the dose, regimen, side effects, and contraindications of each drug you prescribe. In the UK, the British National Formulary for Children (BNFc) is the universal reference point, whilst individual hospitals will have their own specific guidelines.

Differences between Adults and Children

A number of subtle yet important differences exist between adult and paediatric prescribing. These are outlined below:

Drug Metabolism

Pharmacokinetics of medicines differs considerably in children and adults. For example:
4.01 UNDERGRADUATE AND POSTGRADUATE ASSESSMENTS IN PAEDIATRICS

MICHAEL MALLEY AND MARIE MONAGHAN

EXPECTATIONS OF A MEDICAL STUDENT

Although most medical students will not become paediatricians, doctors encounter children in most specialties, such as primary care, ENT and other surgical specialties, and emergency medicine, amongst others.

For undergraduates, senior clinicians want the student to approach the rotation in “good faith.” This means feeling that the student has tried their best, made the most of their time on the ward and shown a measurable improvement in performance. This is not demonstrated in a one-off assessment, but continually throughout the attachment. In terms of competence, it is important the student is confident that they:

- Are aware of the basic management and recognition of common paediatric problems.
- Appreciate the differences between the management of children compared to adults, including communication challenges.
- Understand the differences in adult and paediatric basic life support.
- Are aware of child protection issues and start to understand their management.
- Have completed the requisite range of assessments (which may require organisation on the part of the student).

Before a supervisor meeting at the end of the placement, it is important to think about the main learning points from the rotation, as well as what has gone well, and not so well. Demonstrate evidence of engagement with the children, and the paediatric team. Be aware that supervisors will usually take advice from other paediatric staff to make a holistic assessment of each student.

For postgraduates, educational supervisors have a long list of criteria to “tick off.” Become familiar with this list. Other factors to consider include evidence of quality improvement projects (e.g. audits), managerial experience (e.g. rota co-ordination), teaching experience, exam success and reflective practice. This should all be apparent in the trainee’s learning portfolio. More generally, remember assessments are increasingly recognised as learning opportunities. Prepare
Box 1: Presenting a history

I met Mrs. Brown today, who brought her 7-year-old son Alex to ED with a 24-hour history of difficulty breathing and wheeze.

Alex is known to have asthma. He has had a cough for two days and has developed progressive difficulty in breathing and wheeze over the last 24 hours. He has a low grade temperature and a dry cough. He has been using two puffs of his salbutamol inhaler every four hours without improvement.

Alex has had many previous admissions to hospital, the most serious of which required IV salbutamol two years ago. His last admission was two months ago. His known asthma triggers are pets and upper respiratory tract infections, and he also has a history of eczema. His normal peak flow reading is around 300 mL/min. He misses about two days of school per month due to his asthma.

Alex was born at term without complication and there have been no concerns about his development.

Alex takes two puffs of a beclomethasone inhaler twice per day and uses his salbutamol inhaler when required. He takes no other medications. He has no known drug allergies and his immunisations are up-to-date.

Alex's mother has a history of asthma and his father has hay fever. He lives in a flat with his parents and his 5-year-old brother. There are no smokers in the house and the family have never had any involvement with social services.

In summary, Alex is a 7-year-old boy who presents with a likely acute exacerbation of his asthma.

I would like to proceed to examine Alex, view his observations chart, perform a peak flow measurement and initiate bronchodilator therapy.

Table 1: History taking mark scheme

<table>
<thead>
<tr>
<th>Domain</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct of the consultation.</td>
<td></td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>• Introduction, clarifies role. Rapport.</td>
<td>Clear Pass</td>
</tr>
<tr>
<td>• Empathy and respect.</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>Bare fail</td>
</tr>
<tr>
<td></td>
<td>Clear fail</td>
</tr>
<tr>
<td></td>
<td>Unacceptable</td>
</tr>
<tr>
<td>History taking.</td>
<td></td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>• Clear history of presenting complaint.</td>
<td>Clear Pass</td>
</tr>
<tr>
<td>• Appropriate style.</td>
<td>Pass</td>
</tr>
<tr>
<td>• Fluent and comprehensive history.</td>
<td>Bare fail</td>
</tr>
<tr>
<td>• Explores and responds to concerns/feelings.</td>
<td>Clear fail</td>
</tr>
<tr>
<td>• Summarises and checks understanding.</td>
<td>Clear fail</td>
</tr>
<tr>
<td></td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Differential diagnosis and initial management.</td>
<td></td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>• Appropriate range of differentials appropriate for age.</td>
<td>Clear Pass</td>
</tr>
<tr>
<td>• Accuracy of information/clinical knowledge.</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>Bare fail</td>
</tr>
<tr>
<td></td>
<td>Clear fail</td>
</tr>
<tr>
<td></td>
<td>Unacceptable</td>
</tr>
<tr>
<td>FINAL GRADE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clear Pass</td>
</tr>
<tr>
<td></td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>Bare fail</td>
</tr>
<tr>
<td></td>
<td>Clear fail</td>
</tr>
<tr>
<td></td>
<td>Unacceptable</td>
</tr>
</tbody>
</table>

Examination

Examination stations cause anxiety amongst undergraduate and postgraduate candidates alike. What if the child isn’t co-operative or cries? What if signs are missed? Candidates often think they will be heinously penalised for forgetting pallor or lymphadenopathy or missing grade one clubbing. They aren’t! Remember that the overall conduct of the examination counts more than the sum of its individual minutiae. Be professional, sensitive, structured and observant. The examiner will be asking the question: Is this person appropriate for the next level? Students should act like a junior doctor; junior doctors should act like a middle-grade doctor.

Before the Examination

Practise. A lot. Become familiar with the important components of each examination, and practice under supervision with real patients. This will ensure technique is committed to muscle memory, making it easier to concentrate on picking up relevant clinical signs.

The first and last minute of each station are crucial. Therefore, practise the introduction and take time to put the patient at ease. Then practise presenting the examination findings in one minute. Practise presenting both real and imaginary patients. Practise to the mirror, to friends, and to colleagues.

Patients suitable for examinations nearly always have chronic conditions and are clinically stable. Contemplate what signs they may have and make a list of the common underlying diagnoses (Table 2). Ask senior students what they encountered in their exams. It may be helpful to create maps of common differential diagnoses to consolidate key findings. Figure 1 is an example for abdominal examination.

Starting the Station

Do simple tasks well. Remember: the first minute is critical. Hands should
GENERAL PREPARATION

Paediatrics is a fulfilling and stimulating career, offering the potential to bring joy to children and their families. A unique specialty with its own diverse range of conditions, paediatrics requires a flexible approach, an appreciation for the breadth of medicine, and a dextrous hand for the wide range of procedures involved. As much as it demands, it rewards. Paediatricians laugh, play games and most certainly become familiar with the most popular Disney films and children's TV shows!

Although exciting for those already familiar with paediatrics, not surprisingly, those starting out can find this field incredibly daunting after an education focused on adult-centred medicine (Table 1).

Before starting a general paediatric or neonatal job, practitioners may benefit from attending a paediatric life support course. These are usually incorporated into paediatric induction training. Being confident in resuscitation will lead to increased confidence when facing the most demanding situations. This training can also lend a structured approach to the care of any child and provide advice on the most effective way to communicate and interact in resuscitation scenarios. Induction training will also offer a good opportunity to explore the specific working environment of the paediatric department.

Table 2 shows the key areas in Paediatric units, and Table 3 shows those areas that aid in coordinating patient care. Multidisciplinary teamwork is extremely important in paediatrics, meaning that effective communication is paramount for ensuring all parties are up to date with developments in a child's care. Being open with colleagues about previous levels of experience will help them tailor teaching, day-to-day task allocation and senior support.

The main chapters of the book give detailed information on key conditions encountered in paediatrics and key skills required for assessing and treating children. What follows is additional practical information to help with adaptation to life on paediatric wards.
EXPOSURE TO PAEDIATRICS

Paediatric clinical experience at medical school can be rather limited. As a result, those interested in paediatrics might have difficulty in attaining the desired amount of exposure to the specialty. Approach an educational supervisor or a paediatric consultant about getting more experience in the paediatric ED or general paediatric ward. Often, these environments seem like chaotic places but be proactive and offer to clerk in patients for the paediatric team. This can contribute to history taking and can be a useful way to gain feedback.

Current junior doctors can arrange a “taster week”. This is a dedicated week of study leave arranged through an educational supervisor to give exposure to a speciality of interest. Talk to paediatricians, exploring what they love and hate about their career (Table 1). When on a placement, try to develop practical and communication skills. What may at first seem impossible, such as cannulating a 4-year-old, can become a highlight of the job. Note also that specialties like ED, primary care, ENT and many others come with exposure to paediatric patients.

Volunteer. Most cities have charities aimed at supporting young people. How about using a free afternoon to mentor a pupil? Volunteering will not only improve interaction skills with children, but will also generate meaningful experiences to draw on to support a paediatric speciality application. Incorporate paediatrics into a medical elective: this will provide an alternative perspective on paediatric practice and will be a useful experience to draw upon.

Aside from hands-on experience, getting involved in any research or audits taking place in the paediatric department is also a good idea. These can form the basis for departmental or regional presentations and could even be submitted to paediatric regional or national conferences. While in medical school, students should see if there is a paediatric society to join and become active members. If there isn’t, they could perhaps establish one, with the aims of hosting paediatric teaching events at their university.

CAREER OPTIONS WITHIN PAEDIATRICS

There are two types of clinical paediatric jobs: general paediatricians and sub-specialists (Table 2).