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Introduction 
 
“I’ve made a mistake” 
Four words that no healthcare professional wants to hear, let alone utter. With an 
approximate global incidence of 10%(1,2), medical errors constitute a non-negligible 
proportion of adverse medical outcomes and carry a significant burden of cost to healthcare 
systems and patients(3). Four main factors behind medical errors are: the complex nature of 
medical procedures and equipment, the multi-professional/multi-component nature of 
healthcare, the ease at which errors can propagate along the chain and the difficulty of 
human beings to viably predict downstream consequences within the system(4). The 
pressing need for reducing medical errors, coupled with the intricate human involvement 
demands an extra-human solution – enter Artificial Intelligence (AI). Much has been written 
on the use of AI clinical decision support systems in reducing medical error(5), but its role in 
error analysis itself has yet to be elucidated clearly. This review will explore how AI could be 
pivotal in error reduction strategies, using a specific analysis paradigm as a case study. 
 
AI 
 
AI in healthcare is useful in speeding up data collection and analysis(6) and exists in 3 forms: 
classical machine learning (ML), natural language processing (NLP) and deep 
learning(7)(Figure 1). ML algorithms include techniques to classify, predict and determine 
behavior of target phenomena(8) and come in 3 types: supervised, which requires 
prelabeled data; unsupervised, which does not require any pre-labeling; and reinforcement 
learning, which allows an agent to alter its behavior to achieve a specific goal(8). NLP 
comprises text processing and classification, using keywords to extract meaningful 
information from written language(7). Deep learning includes the field of computer vision 
(CV), which allows AI to identify objects and patterns in images/video(9). An important 
principle is the concept of under- and overfitting(8). A simplified model with high bias can 
become too generalized, failing to capture meaningful patterns in the data (underfit). 
Overcomplicate things, however, and the model can become too specific, overfitting the 
training dataset and failing to adapt to new data. 

 
Figure 1 – Overview of the fields of AI(9) 
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SHERPA 
 
Systematic Human Error Reduction and Prediction Approach (SHERPA) is a tool that has 
been used in both medical and non-medical fields to predict and prevent errors(10,11). 
Workflow begins with hierarchical task analysis (HTA) followed by a rigorous checklist which 
queries: (a) what errors can occur, (b) the likelihood of such errors occurring, (c) the severity 
of the consequences, (d) how one could remedy the situation and (e) future prevention 
plans(3). The results of SHERPA can then be fed back to influence process design and policy. 
Crucially, the HTA and error prediction stages encourage professionals to think more deeply 
about tasks that may be unconsciously ingrained in their practice, thus exposing critical 
‘danger points’ in the procedure(3). 
 
HTA 
 
Firstly, the target procedure is deconstructed into well-defined tasks (Figure 2). This is done 
with input from subject matter experts (SMEs). Although most medical procedures are not 
temporally challenging to fathom, the majority of information within each step is contained 
visually, thus representing a difficult but potential avenue for CV to step in. Recent studies 
have demonstrated the efficacy of CV in measuring surgical skill during tying and suturing 
tasks(12) as well as video segmentation of key steps in laparoscopic procedures(13). This 
could change the game for HTA – AI ‘critics’ could scour through clinical footage and extract 
not only task classification but also operator skill, feeding into the next step in SHERPA of 
error prediction. Such developments are not without their caveats: CV is still dependent on 
human input through annotation of training data(13), and patient outcomes are 
unobserved(12), making the output less relevant for consequence analysis. Arguably, the 
latter is nullified by a longitudinal analytical toolbox such as SHERPA which juxtaposes HTA 
alongside other methods of error analysis. Lastly, large amounts of video data would be 
required to train such algorithms, necessitating changes in infrastructure, workflow and 
data access policies(14). Although the technology is in its early days, the potential benefits 
of such a system once it is up and running would outweigh the short-term costs. 
 

 
 

Figure 2 – HTA applied to medical diagnosis(15) 
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Error generation and classification 
 
Once the procedure has been dissected into subtasks, SMEs must go through each node and 
determine if and what potential errors might occur there. The reversed root cause analysis 
(RCA) that would be demanded in this phase requires an intimate understanding of complex 
systems and how they could fail, a capability that challenges current AI systems. 
Interestingly, the use of fuzzy cognitive maps, a specific type of AI modelling framework, has 
been demonstrated in carrying out RCA for an albeit simplified case(16)(Figure 3). Although 
this is still the inverse of what is required, such maps could be reverse engineered to link 
specific tasks with errors. There is still much work to be done in terms of associating 
causative factors to actual tasks, however these are promising results. 
 

 
Figure 3 – Fuzzy cognitive map used to diagnose the causes of a stalled car(16) 

 
Likelihood and severity prediction 
 
Once the errors have been generated, predictions are then made regarding the probabilities 
that such errors would occur and their severities. This is achieved by one of 2 ways, either 
through SMEs providing anecdotal experience or by trawling the literature and creating 
statistical likelihoods and severity indexes – ceteris paribus, the former is much easier to 
implement but the latter is more reliable. The variance in standards of reporting 
probabilities and likelihoods makes literature review problematic(17). Database crawling 
NLP ‘bots’ could be used to generate preliminary results based on sorting keywords for 
subsequent analysis by researchers, cutting short the review time(6). The shift in NLP away 
from syntactic and towards narrative-based paradigms(18), would allow for the assessment 
of contextual information to produce standardised scores e.g. on a scale of 1 to 10, ‘lifelong 
hemiparesis’ might be judged as a 9 compared to ‘death’ being a 10. Any medical 
professional, however, would understand the importance that quality of life (QoL) plays in 
adverse outcomes and how it affects these results(19). Unfortunately, patient-reported 
outcome measures, good indicators of QoL, are poorly presented in research(20). Some 
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might argue that it is still better to let algorithms decide relative ratings. Whatever one’s 
stance on the matter, it is good to have a choice of an alternative option based on AI. 
 
Remedy steps 
 
Once errors have been explored, SHERPA then calls for solutions. This could be as simple as 
documenting cannula insertion if one has forgotten to do so, or as complex as suturing an 
artery that has been torn intraoperatively. NLP could once again be used to augment the 
process, searching databases of adverse incidents/events and generating solutions that 
have been tried before, although this would require the existence of a database in the first 
place. Such a repository would be feasible to curate as the healthcare system begins to plug 
into the Internet of Things (IoT) paradigm(21)(Figure 4). Loggers implemented in various 
medical devices could connect to central information stores and be utilised to piece 
together an informatic story when an adverse event occurs. IoT is still in its infancy and 
comes with its own set of issues: increasing complexity of the healthcare system could lead 
to more errors(22) and its Orwellian nature might hamper adoption, but here it would be 
argued that clear rules regarding data security and privacy would be enough to garner 
support for the technology(23). Regardless, the story echoes current issues with regards to 
human factors analysis of medical errors: more data is needed for AI to play with. 
 

 
Figure 4 – Simplified map of the IoT paradigm(21) 

 
Error prevention 
 
The last step of SHERPA entails a thorough evaluation as to what strategies could be 
implemented to prevent the occurrence of the identified errors. This is perhaps the most 
cognitively demanding part of the process as the researcher is required to think laterally, a 
task that is still beyond the reach of current AI(24). For example, consider an error in which 
a doctor forgets to assemble a vital piece of kit in a procedure. Even a simple, low-cost 
solution that has proven to be effective, such as putting up a reminder poster(25,26), would 
be beyond current AI capabilities. As such, it is difficult to theorise a situation whereby AI 
could assist in this phase of SHERPA, although this difficulty might be dispelled in the future 
with advances in the field. 
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Conclusion 
 
Through this review, we have illustrated a realistic case study of how AI could be used to 
minimise medical errors by augmenting and in some places replacing human involvement in 
carrying out the SHERPA process. Clearly some human help is still necessary, and it is 
important to remember how this could be a source of error in terms of design and 
methodology flaws. This should not be taken as a failure, however, but a cause for 
celebration: reducing demand in laborious tasks such as HTA and likelihood/severity 
prediction processes can redirect human cognitive energy towards more important issues 
such as remedy and mitigation strategies. AI would be a powerful behind-the-scenes ally – 
after all, prevention is better than cure. 
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